Multiple driving factors and hierarchical management of PM2.5: Evidence from Chinese central urban agglomerations using machine learning model and GTWR

城市群 风速 绿化 驱动因素 环境科学 污染 气象学 中国 地理 自然地理学 经济地理学 生态学 考古 生物
作者
Changhong Ou,Fei Li,Jingdong Zhang,Y. Hu,Xiyao Chen,Shaojie Kong,Jinyuan Guo,Yuanyuan Zhou
出处
期刊:urban climate [Elsevier]
卷期号:46: 101327-101327 被引量:16
标识
DOI:10.1016/j.uclim.2022.101327
摘要

In the fast-developing urban agglomerations (UAs), it is of importance to make accurate judgments concerning the multiple driving factors, and establish hierarchical joint management policy. The impact of weather conditions on daily PM2.5 concentrations in the Chinese central UAs was studied using machine learning algorithm, and the analyzed results were integrated into “the proportion of day numbers with negative weather conditions (PDNW)”. Geographically and temporally weighted regression (GTWR) was used to analyze the driving factors of PM2.5 pollution. Results showed that PM2.5 pollution in central China decreased from north to south, and spatial gathering was becoming increasingly prominent. The PM2.5 predicted values decreased smoothly, with barometric pressure and humidity exerting a large effect, and wind speed and direction having a complex effect. Meteorological conditions had a small effect on the annual scale, but the timing of the effect varied in each city. The distribution of PDNW ranged from 23.3% to 55.6%. The proportion of the tertiary industry's GDP (mean − 0.191), education expenditure (mean − 0.057), and the greening rate of urban built-up areas (mean − 0.295) were found to be negatively correlated with PM2.5 pollution. Transportation, urban greening, innovation, and entrepreneurship were driving factors with obvious spatial differences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美含羞草完成签到 ,获得积分10
1秒前
赘婿应助俭朴晓凡采纳,获得30
1秒前
xiaoju发布了新的文献求助10
2秒前
3秒前
3秒前
LXdjlx完成签到,获得积分20
3秒前
F龙顺完成签到 ,获得积分10
3秒前
qiudaoyv11发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助六尺巷采纳,获得10
4秒前
xingxing完成签到,获得积分10
4秒前
飞飞飞发布了新的文献求助10
4秒前
Lyuoah完成签到 ,获得积分10
5秒前
Earrr发布了新的文献求助10
5秒前
5秒前
hellozijia完成签到,获得积分10
6秒前
无辜的丹雪应助玲家傻妞采纳,获得10
6秒前
完美的溪灵完成签到,获得积分10
7秒前
上官若男应助zz采纳,获得10
7秒前
8秒前
Akim应助yy采纳,获得10
9秒前
haiqin28发布了新的文献求助10
9秒前
9秒前
9秒前
huan发布了新的文献求助10
9秒前
安琦发布了新的文献求助10
10秒前
ding应助Jenny采纳,获得10
10秒前
11秒前
Yang完成签到,获得积分10
11秒前
11秒前
飘落的樱花完成签到,获得积分10
11秒前
liliwang发布了新的文献求助20
11秒前
12秒前
小二郎应助LXdjlx采纳,获得10
12秒前
yys发布了新的文献求助10
13秒前
一颗橙子CCC完成签到,获得积分10
13秒前
慕青应助宋依依采纳,获得10
13秒前
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559