Multiple driving factors and hierarchical management of PM2.5: Evidence from Chinese central urban agglomerations using machine learning model and GTWR

城市群 风速 绿化 驱动因素 环境科学 污染 气象学 中国 地理 自然地理学 经济地理学 生态学 考古 生物
作者
Changhong Ou,Fei Li,Jingdong Zhang,Y. Hu,Xiyao Chen,Shaojie Kong,Jinyuan Guo,Yuanyuan Zhou
出处
期刊:urban climate [Elsevier]
卷期号:46: 101327-101327 被引量:16
标识
DOI:10.1016/j.uclim.2022.101327
摘要

In the fast-developing urban agglomerations (UAs), it is of importance to make accurate judgments concerning the multiple driving factors, and establish hierarchical joint management policy. The impact of weather conditions on daily PM2.5 concentrations in the Chinese central UAs was studied using machine learning algorithm, and the analyzed results were integrated into “the proportion of day numbers with negative weather conditions (PDNW)”. Geographically and temporally weighted regression (GTWR) was used to analyze the driving factors of PM2.5 pollution. Results showed that PM2.5 pollution in central China decreased from north to south, and spatial gathering was becoming increasingly prominent. The PM2.5 predicted values decreased smoothly, with barometric pressure and humidity exerting a large effect, and wind speed and direction having a complex effect. Meteorological conditions had a small effect on the annual scale, but the timing of the effect varied in each city. The distribution of PDNW ranged from 23.3% to 55.6%. The proportion of the tertiary industry's GDP (mean − 0.191), education expenditure (mean − 0.057), and the greening rate of urban built-up areas (mean − 0.295) were found to be negatively correlated with PM2.5 pollution. Transportation, urban greening, innovation, and entrepreneurship were driving factors with obvious spatial differences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hszg2333完成签到 ,获得积分10
1秒前
zz发布了新的文献求助10
1秒前
1秒前
杨德帅发布了新的文献求助10
1秒前
西瓜完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
天天快乐应助Lignin采纳,获得10
3秒前
香蕉觅云应助R18686226306采纳,获得10
4秒前
spc68应助谨慎的寒松采纳,获得10
4秒前
spc68应助谨慎的寒松采纳,获得10
4秒前
4秒前
shenjintai发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
星辰坠于海应助lidd采纳,获得20
8秒前
lmlx发布了新的文献求助10
9秒前
QQ发布了新的文献求助10
9秒前
9秒前
聪慧的从丹完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
13秒前
Lekai发布了新的文献求助10
13秒前
spc68应助谨慎的寒松采纳,获得10
14秒前
spc68应助谨慎的寒松采纳,获得10
14秒前
spc68应助谨慎的寒松采纳,获得10
15秒前
Maestro_S应助aub采纳,获得10
15秒前
17秒前
gua完成签到,获得积分20
18秒前
18秒前
李煜琛完成签到 ,获得积分10
18秒前
19秒前
慕青应助落寞自中采纳,获得10
19秒前
酷波er应助李鸣笛采纳,获得10
19秒前
诚心芷巧完成签到,获得积分10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696