Multiple driving factors and hierarchical management of PM2.5: Evidence from Chinese central urban agglomerations using machine learning model and GTWR

城市群 风速 绿化 驱动因素 环境科学 污染 气象学 中国 地理 自然地理学 经济地理学 生态学 生物 考古
作者
Changhong Ou,Fei Li,Jingdong Zhang,Y. Hu,Xiyao Chen,Shaojie Kong,Jinyuan Guo,Yuanyuan Zhou
出处
期刊:urban climate [Elsevier]
卷期号:46: 101327-101327 被引量:16
标识
DOI:10.1016/j.uclim.2022.101327
摘要

In the fast-developing urban agglomerations (UAs), it is of importance to make accurate judgments concerning the multiple driving factors, and establish hierarchical joint management policy. The impact of weather conditions on daily PM2.5 concentrations in the Chinese central UAs was studied using machine learning algorithm, and the analyzed results were integrated into “the proportion of day numbers with negative weather conditions (PDNW)”. Geographically and temporally weighted regression (GTWR) was used to analyze the driving factors of PM2.5 pollution. Results showed that PM2.5 pollution in central China decreased from north to south, and spatial gathering was becoming increasingly prominent. The PM2.5 predicted values decreased smoothly, with barometric pressure and humidity exerting a large effect, and wind speed and direction having a complex effect. Meteorological conditions had a small effect on the annual scale, but the timing of the effect varied in each city. The distribution of PDNW ranged from 23.3% to 55.6%. The proportion of the tertiary industry's GDP (mean − 0.191), education expenditure (mean − 0.057), and the greening rate of urban built-up areas (mean − 0.295) were found to be negatively correlated with PM2.5 pollution. Transportation, urban greening, innovation, and entrepreneurship were driving factors with obvious spatial differences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的冰旋完成签到 ,获得积分10
刚刚
刘茂甫发布了新的文献求助10
刚刚
1秒前
NexusExplorer应助彘shen采纳,获得10
2秒前
想毕业的小橙子完成签到,获得积分10
4秒前
qingyue完成签到,获得积分10
4秒前
5秒前
6秒前
稳重宛白发布了新的文献求助10
6秒前
XYN1发布了新的文献求助10
8秒前
英俊的铭应助zzz采纳,获得10
8秒前
lierikafei发布了新的文献求助10
10秒前
11秒前
唐画完成签到,获得积分10
11秒前
12秒前
英俊的铭应助Ryan采纳,获得10
13秒前
13秒前
13秒前
烟花应助zz采纳,获得10
13秒前
Lee发布了新的文献求助10
14秒前
15秒前
彘shen发布了新的文献求助10
16秒前
飘逸灵珊发布了新的文献求助10
16秒前
风色幻想完成签到,获得积分10
17秒前
17秒前
18秒前
zzz发布了新的文献求助10
19秒前
梦在远方完成签到,获得积分10
20秒前
zzq发布了新的文献求助10
20秒前
平常的毛豆应助一条小鱼采纳,获得10
20秒前
22秒前
852应助破茧采纳,获得10
22秒前
wantzzz发布了新的文献求助10
23秒前
24秒前
爆米花应助XYN1采纳,获得10
24秒前
Ava应助飘逸灵珊采纳,获得10
24秒前
27秒前
27秒前
27秒前
传奇3应助zp采纳,获得80
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317613
捐赠科研通 2571461
什么是DOI,文献DOI怎么找? 1397075
科研通“疑难数据库(出版商)”最低求助积分说明 653638
邀请新用户注册赠送积分活动 632129