Multiple driving factors and hierarchical management of PM2.5: Evidence from Chinese central urban agglomerations using machine learning model and GTWR

城市群 风速 绿化 驱动因素 环境科学 污染 气象学 中国 地理 自然地理学 经济地理学 生态学 生物 考古
作者
Changhong Ou,Fei Li,Jingdong Zhang,Y. Hu,Xiyao Chen,Shaojie Kong,Jinyuan Guo,Yuanyuan Zhou
出处
期刊:urban climate [Elsevier]
卷期号:46: 101327-101327 被引量:16
标识
DOI:10.1016/j.uclim.2022.101327
摘要

In the fast-developing urban agglomerations (UAs), it is of importance to make accurate judgments concerning the multiple driving factors, and establish hierarchical joint management policy. The impact of weather conditions on daily PM2.5 concentrations in the Chinese central UAs was studied using machine learning algorithm, and the analyzed results were integrated into “the proportion of day numbers with negative weather conditions (PDNW)”. Geographically and temporally weighted regression (GTWR) was used to analyze the driving factors of PM2.5 pollution. Results showed that PM2.5 pollution in central China decreased from north to south, and spatial gathering was becoming increasingly prominent. The PM2.5 predicted values decreased smoothly, with barometric pressure and humidity exerting a large effect, and wind speed and direction having a complex effect. Meteorological conditions had a small effect on the annual scale, but the timing of the effect varied in each city. The distribution of PDNW ranged from 23.3% to 55.6%. The proportion of the tertiary industry's GDP (mean − 0.191), education expenditure (mean − 0.057), and the greening rate of urban built-up areas (mean − 0.295) were found to be negatively correlated with PM2.5 pollution. Transportation, urban greening, innovation, and entrepreneurship were driving factors with obvious spatial differences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi完成签到,获得积分20
刚刚
刚刚
星辰大海应助帅气绮露采纳,获得10
刚刚
刚刚
大个应助仁爱的野狼采纳,获得10
刚刚
SciGPT应助仁爱的野狼采纳,获得10
1秒前
lili666999发布了新的文献求助10
1秒前
1秒前
暮念完成签到,获得积分10
1秒前
1秒前
木头人完成签到,获得积分10
1秒前
xxiaojing完成签到,获得积分10
1秒前
韦恩发布了新的文献求助10
1秒前
BowieHuang应助阿浩采纳,获得30
2秒前
小草06发布了新的文献求助10
2秒前
2秒前
2秒前
RC_Wang发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
123完成签到,获得积分10
3秒前
小象腿完成签到,获得积分10
4秒前
4秒前
Quhang完成签到,获得积分10
5秒前
5秒前
6秒前
陈总发布了新的文献求助10
6秒前
Ava应助蕾蕾采纳,获得10
6秒前
6秒前
伶俐耷发布了新的文献求助10
7秒前
7秒前
7秒前
壑舟发布了新的文献求助10
7秒前
龙抬头发布了新的文献求助10
7秒前
JINtian发布了新的文献求助10
7秒前
8秒前
楠啵丸完成签到 ,获得积分10
8秒前
啊Q完成签到,获得积分20
8秒前
leo发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055