污水处理
废水
环境科学
环境工程
微塑料
地下水流
人工湿地
阶段(地层学)
二次处理
湿地
水生环境
制浆造纸工业
环境化学
化学
生态学
生物
地下水
工程类
古生物学
岩土工程
作者
Yuannan Long,Zhenyu Zhou,Xiaofeng Wen,Jianwu Wang,Ruihao Xiao,Wenming Wang,Xiwei Li,Lai Xu,You Zhang,Chaoping Deng,Cao Jin-song,Lingshi Yin
出处
期刊:Chemosphere
[Elsevier]
日期:2022-11-10
卷期号:312: 137199-137199
被引量:17
标识
DOI:10.1016/j.chemosphere.2022.137199
摘要
Wastewater treatment plants (WWTPs) are an important source of microplastics (MPs) entering the aquatic environment. As environmental awareness increases, WWTPs are gradually using constructed wetlands (CWs) in the depth treatment stage. There were few studies related to MPs removal efficiency of CWs, especially in multi-stage and multi-combinations CWs. Therefore, we studied MPs characteristics and removal in a typical CWs WWTP in Changsha, comparing the MPs removal efficiencies of different processes in a WWTP, focusing on the MPs abundance variation in different stages CWs. Result showed that the MPs removal efficiency of Phase Ⅰ was 87.72% and that of Phase II was 80.65%. Approximate estimates showed that the daily discharge of MPs reached 7.20 * 108 items. The MPs removal efficiency of vertical flow CWs was 25.71%. The MPs removal efficiencies of secondary and tertiary horizontal subsurface flow CWs (HSSFCWs) were 32.00% and 21.43%. The MPs removal efficiencies of secondary and tertiary surface flow CWs were 23.53% and 12.50%. The MPs removal efficiencies of three bio-ponds were -23.08%, -12.90%, and -27.27%. Combined system of bio-pond + CWs reduced the MPs removal efficiency. The most dominant shape of MPs in wastewater was fibers. The most common MPs were polyethylene and polystyrene. The primary treatment in the Changsha WWTP had the highest MPs removal efficiency. Results of this investigation showed the multi-combination and multi-stage CWs WWTP can remove most of MPs in influent, which greatly reduced the amount of MPs discharged into the aquatic environment through WWTP and provided data for analyzing the distribution of MPs in the aquatic environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI