DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation

分割 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像分割 计算机视觉 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151 (Pt A): 106304-106304 被引量:29
标识
DOI:10.1016/j.compbiomed.2022.106304
摘要

Accurate and reliable segmentation of colorectal polyps is important for the diagnosis and treatment of colorectal cancer. Most of the existing polyp segmentation methods innovatively combine CNN with Transformer. Due to the single combination approach, there are limitations in establishing connections between local feature information and utilizing global contextual information captured by Transformer. Still not a better solution to the problems in polyp segmentation. In this paper, we propose a Dual Branch Multiscale Feature Fusion Network for Polyp Segmentation, abbreviated as DBMF, for polyp segmentation to achieve accurate segmentation of polyps. DBMF uses CNN and Transformer in parallel to extract multi-scale local information and global contextual information respectively, with different regions and levels of information to make the network more accurate in identifying polyps and their surrounding tissues. Feature Super Decoder (FSD) fuses multi-level local features and global contextual information in dual branches to fully exploit the potential of combining CNN and Transformer to improve the network's ability to parse complex scenes and the detection rate of tiny polyps. The FSD generates an initial segmentation map to guide the second parallel decoder (SPD) to refine the segmentation boundary layer by layer. SPD consists of a multi-scale feature aggregation module (MFA) and parallel polarized self-attention (PSA) and reverse attention fusion modules (RAF). MFA aggregates multi-level local feature information extracted by CNN Brach to find consensus regions between multiple scales and improve the network's ability to identify polyp regions. PSA uses dual attention to enhance the fine-grained nature of segmented regions and reduce the redundancy introduced by MFA and interference information. RAF mines boundary cues and establishes relationships between regions and boundary cues. The three RAFs guide the network to explore lost targets and boundaries in a bottom-up manner. We used the CVC-ClinicDB, Kvasir, CVC-300, CVC-ColonDB, and ETIS datasets to conduct comparison experiments and ablation experiments between DBMF and mainstream polyp segmentation networks. The results showed that DBMF outperformed the current mainstream networks on five benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彩虹捕手发布了新的文献求助10
1秒前
bhc186发布了新的文献求助10
2秒前
2秒前
冬瓜熊完成签到,获得积分10
2秒前
义气绫关注了科研通微信公众号
2秒前
3秒前
攒一口袋星星完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
CR完成签到 ,获得积分10
5秒前
5秒前
Ting完成签到,获得积分10
5秒前
搜集达人应助ff采纳,获得10
5秒前
科研通AI6应助絮1111采纳,获得10
6秒前
打打应助李小鑫吖采纳,获得10
6秒前
6秒前
6秒前
青黄的枣12138完成签到,获得积分10
7秒前
wwr2006关注了科研通微信公众号
7秒前
7秒前
ziyue发布了新的文献求助10
7秒前
阿乐发布了新的文献求助10
7秒前
无感完成签到,获得积分10
7秒前
Kahanto完成签到,获得积分10
7秒前
8秒前
zyy发布了新的文献求助10
8秒前
nn应助美满向薇采纳,获得10
8秒前
zyx发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
10秒前
10秒前
城南花已开完成签到,获得积分10
11秒前
11秒前
数字灵魂完成签到,获得积分10
11秒前
失眠乐双完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609025
求助须知:如何正确求助?哪些是违规求助? 4693758
关于积分的说明 14879338
捐赠科研通 4719004
什么是DOI,文献DOI怎么找? 2544583
邀请新用户注册赠送积分活动 1509586
关于科研通互助平台的介绍 1472897