DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation

分割 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像分割 计算机视觉 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106304-106304 被引量:17
标识
DOI:10.1016/j.compbiomed.2022.106304
摘要

Accurate and reliable segmentation of colorectal polyps is important for the diagnosis and treatment of colorectal cancer. Most of the existing polyp segmentation methods innovatively combine CNN with Transformer. Due to the single combination approach, there are limitations in establishing connections between local feature information and utilizing global contextual information captured by Transformer. Still not a better solution to the problems in polyp segmentation. In this paper, we propose a Dual Branch Multiscale Feature Fusion Network for Polyp Segmentation, abbreviated as DBMF, for polyp segmentation to achieve accurate segmentation of polyps. DBMF uses CNN and Transformer in parallel to extract multi-scale local information and global contextual information respectively, with different regions and levels of information to make the network more accurate in identifying polyps and their surrounding tissues. Feature Super Decoder (FSD) fuses multi-level local features and global contextual information in dual branches to fully exploit the potential of combining CNN and Transformer to improve the network's ability to parse complex scenes and the detection rate of tiny polyps. The FSD generates an initial segmentation map to guide the second parallel decoder (SPD) to refine the segmentation boundary layer by layer. SPD consists of a multi-scale feature aggregation module (MFA) and parallel polarized self-attention (PSA) and reverse attention fusion modules (RAF). MFA aggregates multi-level local feature information extracted by CNN Brach to find consensus regions between multiple scales and improve the network's ability to identify polyp regions. PSA uses dual attention to enhance the fine-grained nature of segmented regions and reduce the redundancy introduced by MFA and interference information. RAF mines boundary cues and establishes relationships between regions and boundary cues. The three RAFs guide the network to explore lost targets and boundaries in a bottom-up manner. We used the CVC-ClinicDB, Kvasir, CVC-300, CVC-ColonDB, and ETIS datasets to conduct comparison experiments and ablation experiments between DBMF and mainstream polyp segmentation networks. The results showed that DBMF outperformed the current mainstream networks on five benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Smiling完成签到 ,获得积分10
刚刚
jinhui完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
轻雨完成签到 ,获得积分10
2秒前
3秒前
李彤阳完成签到,获得积分10
3秒前
小树发布了新的文献求助10
3秒前
李健应助林林林采纳,获得10
3秒前
up完成签到,获得积分10
3秒前
暖阳发布了新的文献求助20
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
欣慰从云完成签到,获得积分20
5秒前
Yozzi完成签到,获得积分10
6秒前
热心市民蚂蚱殿下完成签到,获得积分10
7秒前
。。完成签到,获得积分20
8秒前
香蕉觅云应助坤坤采纳,获得10
8秒前
炙热的爆米花完成签到,获得积分20
8秒前
Ma完成签到 ,获得积分10
9秒前
9秒前
狄远山完成签到 ,获得积分10
9秒前
章鱼丸子完成签到,获得积分10
9秒前
哭泣的鸵鸟完成签到,获得积分10
9秒前
reny发布了新的文献求助10
10秒前
烂漫春天发布了新的文献求助10
10秒前
10秒前
489完成签到 ,获得积分10
10秒前
柯柯啦啦完成签到,获得积分10
11秒前
scy关注了科研通微信公众号
11秒前
11秒前
皮肤专硕小白一枚完成签到,获得积分10
11秒前
高贵的子默完成签到,获得积分10
11秒前
12秒前
12秒前
搜集达人应助silin采纳,获得10
13秒前
yingrui完成签到,获得积分10
13秒前
烟花应助周飞采纳,获得10
13秒前
小树完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4588123
求助须知:如何正确求助?哪些是违规求助? 4003732
关于积分的说明 12394936
捐赠科研通 3680328
什么是DOI,文献DOI怎么找? 2028598
邀请新用户注册赠送积分活动 1062082
科研通“疑难数据库(出版商)”最低求助积分说明 948086