DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation

分割 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像分割 计算机视觉 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151 (Pt A): 106304-106304 被引量:29
标识
DOI:10.1016/j.compbiomed.2022.106304
摘要

Accurate and reliable segmentation of colorectal polyps is important for the diagnosis and treatment of colorectal cancer. Most of the existing polyp segmentation methods innovatively combine CNN with Transformer. Due to the single combination approach, there are limitations in establishing connections between local feature information and utilizing global contextual information captured by Transformer. Still not a better solution to the problems in polyp segmentation. In this paper, we propose a Dual Branch Multiscale Feature Fusion Network for Polyp Segmentation, abbreviated as DBMF, for polyp segmentation to achieve accurate segmentation of polyps. DBMF uses CNN and Transformer in parallel to extract multi-scale local information and global contextual information respectively, with different regions and levels of information to make the network more accurate in identifying polyps and their surrounding tissues. Feature Super Decoder (FSD) fuses multi-level local features and global contextual information in dual branches to fully exploit the potential of combining CNN and Transformer to improve the network's ability to parse complex scenes and the detection rate of tiny polyps. The FSD generates an initial segmentation map to guide the second parallel decoder (SPD) to refine the segmentation boundary layer by layer. SPD consists of a multi-scale feature aggregation module (MFA) and parallel polarized self-attention (PSA) and reverse attention fusion modules (RAF). MFA aggregates multi-level local feature information extracted by CNN Brach to find consensus regions between multiple scales and improve the network's ability to identify polyp regions. PSA uses dual attention to enhance the fine-grained nature of segmented regions and reduce the redundancy introduced by MFA and interference information. RAF mines boundary cues and establishes relationships between regions and boundary cues. The three RAFs guide the network to explore lost targets and boundaries in a bottom-up manner. We used the CVC-ClinicDB, Kvasir, CVC-300, CVC-ColonDB, and ETIS datasets to conduct comparison experiments and ablation experiments between DBMF and mainstream polyp segmentation networks. The results showed that DBMF outperformed the current mainstream networks on five benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小琪猪完成签到,获得积分10
1秒前
小宅女完成签到 ,获得积分10
1秒前
漉浔完成签到 ,获得积分10
1秒前
wangyiren发布了新的文献求助10
1秒前
闲闲完成签到,获得积分10
1秒前
巧克力曲奇完成签到,获得积分20
1秒前
yolo完成签到,获得积分10
1秒前
2秒前
棉花糖发布了新的文献求助10
2秒前
3秒前
Hello应助谦让靖儿采纳,获得10
4秒前
JOhn发布了新的文献求助10
4秒前
4秒前
姜惠完成签到,获得积分10
5秒前
九方嘉许完成签到,获得积分10
5秒前
Felixsun发布了新的文献求助10
5秒前
科研三轮车完成签到,获得积分10
5秒前
子清1987完成签到,获得积分10
6秒前
洪豆豆完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
少川完成签到 ,获得积分10
8秒前
含糊的玲发布了新的文献求助10
9秒前
二十二完成签到,获得积分10
9秒前
dnxn发布了新的文献求助30
10秒前
边伯贤完成签到 ,获得积分10
10秒前
又又s_1完成签到 ,获得积分20
11秒前
汪汪完成签到,获得积分10
11秒前
Chance完成签到,获得积分10
12秒前
Owen应助Felixsun采纳,获得10
12秒前
加油干完成签到,获得积分10
12秒前
12秒前
小小鱼完成签到,获得积分10
13秒前
13秒前
昏睡的慕青完成签到,获得积分10
13秒前
淡然的天佑完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285