DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation

分割 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像分割 计算机视觉 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151 (Pt A): 106304-106304 被引量:29
标识
DOI:10.1016/j.compbiomed.2022.106304
摘要

Accurate and reliable segmentation of colorectal polyps is important for the diagnosis and treatment of colorectal cancer. Most of the existing polyp segmentation methods innovatively combine CNN with Transformer. Due to the single combination approach, there are limitations in establishing connections between local feature information and utilizing global contextual information captured by Transformer. Still not a better solution to the problems in polyp segmentation. In this paper, we propose a Dual Branch Multiscale Feature Fusion Network for Polyp Segmentation, abbreviated as DBMF, for polyp segmentation to achieve accurate segmentation of polyps. DBMF uses CNN and Transformer in parallel to extract multi-scale local information and global contextual information respectively, with different regions and levels of information to make the network more accurate in identifying polyps and their surrounding tissues. Feature Super Decoder (FSD) fuses multi-level local features and global contextual information in dual branches to fully exploit the potential of combining CNN and Transformer to improve the network's ability to parse complex scenes and the detection rate of tiny polyps. The FSD generates an initial segmentation map to guide the second parallel decoder (SPD) to refine the segmentation boundary layer by layer. SPD consists of a multi-scale feature aggregation module (MFA) and parallel polarized self-attention (PSA) and reverse attention fusion modules (RAF). MFA aggregates multi-level local feature information extracted by CNN Brach to find consensus regions between multiple scales and improve the network's ability to identify polyp regions. PSA uses dual attention to enhance the fine-grained nature of segmented regions and reduce the redundancy introduced by MFA and interference information. RAF mines boundary cues and establishes relationships between regions and boundary cues. The three RAFs guide the network to explore lost targets and boundaries in a bottom-up manner. We used the CVC-ClinicDB, Kvasir, CVC-300, CVC-ColonDB, and ETIS datasets to conduct comparison experiments and ablation experiments between DBMF and mainstream polyp segmentation networks. The results showed that DBMF outperformed the current mainstream networks on five benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝的以云完成签到,获得积分10
刚刚
小二郎应助Francohf采纳,获得10
1秒前
芋圆不圆完成签到,获得积分10
1秒前
糖丸完成签到,获得积分10
1秒前
somnus完成签到,获得积分10
4秒前
April_ff应助外向的从波采纳,获得10
4秒前
4秒前
Yi关注了科研通微信公众号
5秒前
6秒前
7秒前
打打应助王悦靓采纳,获得10
7秒前
friendship_x发布了新的文献求助10
8秒前
北一发布了新的文献求助10
8秒前
小鱼干不爱看书完成签到,获得积分10
8秒前
梅天豪完成签到,获得积分20
8秒前
cowmoon完成签到 ,获得积分10
9秒前
林瑶发布了新的文献求助10
10秒前
林俊超完成签到,获得积分10
11秒前
wanci应助外向的绿蓉采纳,获得10
11秒前
jajaqy完成签到,获得积分10
11秒前
王卫完成签到,获得积分10
14秒前
xuli21315完成签到 ,获得积分10
14秒前
15秒前
温柔的婷完成签到,获得积分10
16秒前
16秒前
DDD完成签到 ,获得积分10
16秒前
18秒前
孟雯毓发布了新的文献求助10
19秒前
zhugao完成签到,获得积分10
19秒前
19秒前
可爱的函函应助saafczvvn采纳,获得10
21秒前
lxy发布了新的文献求助10
21秒前
老干部发布了新的文献求助10
22秒前
撒啊完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
24秒前
wanci应助Ressia0727采纳,获得10
25秒前
123发布了新的文献求助10
27秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898