DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation

分割 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像分割 计算机视觉 语言学 哲学
作者
Fangjin Liu,Zhen Hua,Jinjiang Li,Linwei Fan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106304-106304 被引量:17
标识
DOI:10.1016/j.compbiomed.2022.106304
摘要

Accurate and reliable segmentation of colorectal polyps is important for the diagnosis and treatment of colorectal cancer. Most of the existing polyp segmentation methods innovatively combine CNN with Transformer. Due to the single combination approach, there are limitations in establishing connections between local feature information and utilizing global contextual information captured by Transformer. Still not a better solution to the problems in polyp segmentation. In this paper, we propose a Dual Branch Multiscale Feature Fusion Network for Polyp Segmentation, abbreviated as DBMF, for polyp segmentation to achieve accurate segmentation of polyps. DBMF uses CNN and Transformer in parallel to extract multi-scale local information and global contextual information respectively, with different regions and levels of information to make the network more accurate in identifying polyps and their surrounding tissues. Feature Super Decoder (FSD) fuses multi-level local features and global contextual information in dual branches to fully exploit the potential of combining CNN and Transformer to improve the network's ability to parse complex scenes and the detection rate of tiny polyps. The FSD generates an initial segmentation map to guide the second parallel decoder (SPD) to refine the segmentation boundary layer by layer. SPD consists of a multi-scale feature aggregation module (MFA) and parallel polarized self-attention (PSA) and reverse attention fusion modules (RAF). MFA aggregates multi-level local feature information extracted by CNN Brach to find consensus regions between multiple scales and improve the network's ability to identify polyp regions. PSA uses dual attention to enhance the fine-grained nature of segmented regions and reduce the redundancy introduced by MFA and interference information. RAF mines boundary cues and establishes relationships between regions and boundary cues. The three RAFs guide the network to explore lost targets and boundaries in a bottom-up manner. We used the CVC-ClinicDB, Kvasir, CVC-300, CVC-ColonDB, and ETIS datasets to conduct comparison experiments and ablation experiments between DBMF and mainstream polyp segmentation networks. The results showed that DBMF outperformed the current mainstream networks on five benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
tony完成签到,获得积分10
1秒前
Uynaux发布了新的文献求助30
1秒前
SONG完成签到,获得积分10
1秒前
SYLH应助干秋白采纳,获得10
2秒前
2秒前
风雨1210发布了新的文献求助10
3秒前
文艺书雪完成签到 ,获得积分10
3秒前
独行侠完成签到,获得积分10
3秒前
4秒前
我测你码发布了新的文献求助10
4秒前
又要起名字完成签到,获得积分10
4秒前
4秒前
4秒前
damian完成签到,获得积分10
5秒前
LiShin发布了新的文献求助10
5秒前
渝州人应助凤凰山采纳,获得10
6秒前
sweetbearm应助凤凰山采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
yizhiGao应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
顾矜应助随机起的名采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
6秒前
pinging应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
yizhiGao应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得20
7秒前
小小旋风应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
敬老院N号应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794