Segmentation of human aorta using 3D nnU-net-oriented deep learning

分割 计算机科学 主动脉瓣 人工智能 医学 心脏病学 模式识别(心理学) 内科学
作者
Feng Li,Lianzhong Sun,Kwok‐Yan Lam,Songbo Zhang,Zhongming Sun,Bao Peng,Hongzeng Xu,Libo Zhang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:93 (11) 被引量:9
标识
DOI:10.1063/5.0084433
摘要

Computed tomography angiography (CTA) has become the main imaging technique for cardiovascular diseases. Before performing the transcatheter aortic valve intervention operation, segmenting images of the aortic sinus and nearby cardiovascular tissue from enhanced images of the human heart is essential for auxiliary diagnosis and guiding doctors to make treatment plans. This paper proposes a nnU-Net (no-new-Net) framework based on deep learning (DL) methods to segment the aorta and the heart tissue near the aortic valve in cardiac CTA images, and verifies its accuracy and effectiveness. A total of 130 sets of cardiac CTA image data (88 training sets, 22 validation sets, and 20 test sets) of different subjects have been used for the study. The advantage of the nnU-Net model is that it can automatically perform preprocessing and data augmentation according to the input image data, can dynamically adjust the network structure and parameter configuration, and has a high model generalization ability. Experimental results show that the DL method based on nnU-Net can accurately and effectively complete the segmentation task of cardiac aorta and cardiac tissue near the root on the cardiac CTA dataset, and achieves an average Dice similarity coefficient of 0.9698 ± 0.0081. The actual inference segmentation effect basically meets the preoperative needs of the clinic. Using the DL method based on the nnU-Net model solves the problems of low accuracy in threshold segmentation, bad segmentation of organs with fuzzy edges, and poor adaptability to different patients' cardiac CTA images. nnU-Net will become an excellent DL technology in cardiac CTA image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
花花发布了新的文献求助100
1秒前
今后应助车大花采纳,获得10
1秒前
牛科研马应助幼萱采纳,获得20
1秒前
CodeCraft应助gej采纳,获得10
1秒前
兜兜完成签到 ,获得积分10
2秒前
2秒前
故意的靳完成签到,获得积分20
2秒前
Leo发布了新的文献求助10
3秒前
隐形曼青应助呼吸小研狗采纳,获得10
3秒前
特特发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
HongqiZhang完成签到 ,获得积分0
5秒前
6秒前
孟子发布了新的文献求助10
6秒前
欣喜豌豆完成签到,获得积分10
6秒前
陶征应助DZ采纳,获得10
6秒前
7秒前
香蕉觅云应助咕咚采纳,获得10
7秒前
谨慎纸飞机完成签到,获得积分10
8秒前
8秒前
8秒前
SYLH应助cly采纳,获得10
8秒前
8秒前
9秒前
11秒前
梅岗郑完成签到,获得积分10
11秒前
罗盘发布了新的文献求助10
11秒前
柯瑾发布了新的文献求助10
12秒前
Ztt驳回了大模型应助
12秒前
谦让大娘发布了新的文献求助10
14秒前
gej发布了新的文献求助10
14秒前
14秒前
脑洞疼应助啦啦啦采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092