Interdisciplinary frontiers: computer-based process data analysis in educational measurement

过程(计算) 计算机科学 终结性评价 任务(项目管理) 形成性评价 数据科学 课程 领域(数学) 数学教育 工程类 心理学 教育学 数学 操作系统 系统工程 纯数学
作者
Björn Fabrice Nicolay,Florian Krieger,Samuel Greiff
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 417-429
标识
DOI:10.1016/b978-0-12-818630-5.10051-x
摘要

In recent years, the collection and analysis of technology-based process data in the educational measurement realm has steadily increased. Process data are usually generated automatically while a student is working on a computer-based task or exercise, and contain all relevant pieces of information on how the student interacts with this task. Such information includes but is not limited to task duration, number of clicks, and task performance. Given the informational richness of computer-based process data, its analysis is of great interest to educational stakeholders and researchers alike. Notably, scientific results obtained from process data analysis have been used to adapt assessment techniques and institutional curricula, and have uncovered areas for intervention to foster integral skills that provide an educational benefit to students. This article presents a thorough overview of historical and contemporary applications of technology-based process data analysis in the educational field. Specifically, it provides in-depth coverage of the role of process data analysis with respect to psychometrical considerations, formative and summative assessment. Moreover, we describe process data analysis for large-scale educational assessments such as PISA and PIAAC, as well as publicly available process data repositories. Additionally, process data analysis in educational measurement is showcased using the example of complex problem solving, a skill that has proven to be relevant for students' educational success and beyond. Finally, this article addresses several current challenges to consider when engaging in computer-based process data analysis for educational purposes, before concluding with an outlook on potential future developments in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方賢完成签到,获得积分10
2秒前
一颗葡萄完成签到 ,获得积分10
2秒前
打打应助李博士采纳,获得30
3秒前
陈琛发布了新的文献求助10
3秒前
冰糖葫芦完成签到,获得积分20
3秒前
Fa发布了新的文献求助10
4秒前
摸鱼鱼发布了新的文献求助10
4秒前
李顺利发布了新的文献求助10
5秒前
5秒前
YXM1完成签到,获得积分10
5秒前
MissZhang完成签到,获得积分10
5秒前
5秒前
6秒前
Owen应助红红火火恍恍惚惚采纳,获得10
6秒前
爱听歌的老四完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
乌拉拉完成签到,获得积分10
9秒前
9秒前
10秒前
哈密瓜完成签到,获得积分10
10秒前
transition发布了新的文献求助30
10秒前
zhao完成签到,获得积分10
10秒前
YUYUYU完成签到,获得积分10
11秒前
科研通AI6应助超帅的薯片采纳,获得10
11秒前
清脆雪糕发布了新的文献求助10
11秒前
qiqiqi发布了新的文献求助10
11秒前
陈橙橙发布了新的文献求助10
12秒前
张雅露完成签到,获得积分10
12秒前
12秒前
13秒前
Cookies完成签到,获得积分10
13秒前
研友_8DoebZ发布了新的文献求助10
14秒前
longer完成签到 ,获得积分10
15秒前
16秒前
orixero应助冰糖葫芦采纳,获得30
18秒前
我是老大应助机智思真采纳,获得10
18秒前
18秒前
18秒前
成永福完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222