光学
太赫兹辐射
无损检测
连续波
材料科学
声学
持续监测
计算机科学
电子工程
物理
光电子学
激光器
工程类
量子力学
运营管理
作者
Jing Xu,Zhenwei Zhang,Peng Yang,Liquan Dong,Yuejin Zhao
出处
期刊:Applied Optics
[Optica Publishing Group]
日期:2022-10-18
卷期号:61 (34): 10230-10230
被引量:6
摘要
Polyethylene (PE) pipes are widely used as the main carrier for the transportation of natural gas, so nondestructive testing techniques for PE pipes are essential for the safety of natural gas transportation. In order to compensate for the shortcomings of conventional inspection methods, a terahertz (THz) three-dimensional imaging system for nondestructive inspection of PE pipes is designed. The system is based on frequency-modulated continuous-wave (FMCW) technology, with a THz source bandwidth of 0.225-0.330 THz and an output power of over 5 mW, which can achieve submillimeter spatial resolution in three dimensions. The system is used to scan PE pipes in three dimensions in a laboratory environment, and the results show that the system could achieve nondestructive testing and three-dimensional imaging of different defects in PE pipes. In addition, combined with the deep-learning-based THz transformer network, the intelligent identification of different defects is realized, and the accuracy rate can reach up to 88%. The above results provide technical guidance for the application of THz FMCW systems in the actual detection of PE pipes, and provide supplements and improvements for traditional detection methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI