Enabling high energy storage performance in PVDF-based nanocomposites filled with high-entropy oxide nanofibers

材料科学 复合材料 纳米复合材料 纳米纤维 电介质 电场 储能 陶瓷 聚合物 聚合物纳米复合材料 电容器 氧化物 电压 光电子学 电气工程 功率(物理) 工程类 冶金 物理 量子力学
作者
Lü Jing,Weili Li,Chang Gao,Menglu Li,Weidong Fei
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:230: 109783-109783 被引量:12
标识
DOI:10.1016/j.compscitech.2022.109783
摘要

Incorporating inorganic ceramic fillers in organic polymer matrix has been demonstrated as the major and effective strategy for excellent energy storage performance. Nevertheless, the excessive addition leads to the deterioration of breakdown strength and energy density, thus impedes the practical application. Herein, a completely new idea of preparing high-entropy oxide (Eu0.2Bi0·2Y0·2La0·2Cr0.2)2O3 (EBYLCO) nanofiber fillers is proposed and the EBYLCO-P(VDF-HFP)/PMMA nanocomposites are fabricated with an ultralow filling content. The enhanced entropy in the lattices results in the local polymorphic distortion and effectively increases the degree of the structural disorder. The random stress field and random electric field are remarkably enhanced. The pinning effect produced by the local polymorphic distortion restricts the movements of long polymer chains, which builds a stronger cross-linked network structure, reduces the loss under the strong electric field and further promotes the breakdown strength of the nanocomposites. Besides, the charge-shielding layers between polymer and nanofillers block the injection and transmission of space charges, which also contributes to high breakdown strength. Combining the enhanced breakdown strength of 509.4 kV mm−1 with the significantly increased polarization, the nanocomposite releases a maximum energy density of 15.13 J cm−3 and energy efficiency of 71%. This work is expected to provide a novel design paradigm for the nanofillers and further improves the energy storage capability for the dielectric capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助轻松棉花糖采纳,获得30
刚刚
1秒前
1秒前
1秒前
3秒前
浮游应助十八鱼采纳,获得10
4秒前
4秒前
子车代芙发布了新的文献求助10
4秒前
何木木完成签到 ,获得积分10
4秒前
Nancy完成签到,获得积分20
5秒前
6秒前
7秒前
舒适平文完成签到 ,获得积分10
7秒前
7秒前
7秒前
Function完成签到,获得积分10
7秒前
7秒前
赘婿应助Yong采纳,获得30
9秒前
yyy完成签到,获得积分10
11秒前
12秒前
12秒前
大个应助飘逸皮卡丘采纳,获得10
12秒前
田填填完成签到 ,获得积分10
12秒前
13秒前
研友_850aeZ完成签到,获得积分0
14秒前
wan12138完成签到,获得积分10
14秒前
15秒前
张中山发布了新的文献求助10
15秒前
南风歌初发布了新的文献求助10
15秒前
adamchris应助AlexLXJ采纳,获得10
16秒前
华仔应助LX采纳,获得10
17秒前
小二郎应助xm采纳,获得10
17秒前
17秒前
18秒前
NexusExplorer应助玖玖采纳,获得10
18秒前
保奔完成签到,获得积分10
18秒前
20秒前
20秒前
等待发布了新的文献求助10
21秒前
祖佳完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160