已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Progressive Perception Learning for Main Coronary Segmentation in X-Ray Angiography

分割 背景(考古学) 计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 感知 图像分割 模式识别(心理学) 心理学 语言学 生物 哲学 古生物学 神经科学
作者
Hong-Wei Zhang,Zhifan Gao,Dong Zhang,William Kongto Hau,Heye Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 864-879 被引量:31
标识
DOI:10.1109/tmi.2022.3219126
摘要

Main coronary segmentation from the X-ray angiography images is important for the computer-aided diagnosis and treatment of coronary disease. However, it confronts the challenge at three different image granularities (the semantic, surrounding, and local levels). The challenge includes the semantic confusion between the main and collateral vessels, low contrast between the foreground vessel and background surroundings, and local ambiguity near the vessel boundaries. The traditional hand-crafted feature-based methods may be insufficient because they may lack the semantic relationship information and may not distinguish the main and collateral vessels. The existing deep learning-based methods seem to have issues due to the deficiency in the long-distance semantic relationship capture, the foreground and background interference adaptability, and the boundary detail information preservation. To solve the main coronary segmentation challenge, we propose the progressive perception learning (PPL) framework to inspect these three different image granularities. Specifically, the PPL contains the context, interference, and boundary perception modules. The context perception is designed to focus on the main coronary vessel based on the semantic dependence capture among different coronary segments. The interference perception is designed to purify the feature maps based on the foreground vessel enhancement and background artifact suppression. The boundary perception is designed to highlight the boundary details based on boundary feature extraction through the intersection between the foreground and background predictions. Extensive experiments on 1085 subjects show that the PPL is effective (e.g., the overall Dice is greater than 95%), and superior to thirteen state-of-the-art coronary segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哦哦哦完成签到 ,获得积分10
刚刚
David发布了新的文献求助10
1秒前
十一完成签到,获得积分10
3秒前
4秒前
JamesPei应助Whisper采纳,获得10
5秒前
5秒前
6秒前
6秒前
xiaofeiyan发布了新的文献求助20
6秒前
john发布了新的文献求助10
8秒前
8秒前
哆小咪完成签到 ,获得积分10
8秒前
554802336应助666采纳,获得30
8秒前
9秒前
tyjie完成签到 ,获得积分10
10秒前
11秒前
Jasper应助英俊的咖啡豆采纳,获得30
11秒前
12秒前
13秒前
AC赵先生发布了新的文献求助10
13秒前
14秒前
哈哈完成签到,获得积分20
15秒前
丁真先生完成签到,获得积分10
16秒前
16秒前
CodeCraft应助重要的如天采纳,获得10
16秒前
ohh发布了新的文献求助10
17秒前
暴躁的鸿发布了新的文献求助10
18秒前
20秒前
简约生活发布了新的文献求助10
20秒前
小小斌完成签到,获得积分10
21秒前
打打应助Friday采纳,获得10
22秒前
李健应助Master采纳,获得10
23秒前
25秒前
卡恩完成签到 ,获得积分10
25秒前
26秒前
Ava应助Jemma采纳,获得10
27秒前
28秒前
bc应助john采纳,获得20
29秒前
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976455
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203728
捐赠科研通 3257156
什么是DOI,文献DOI怎么找? 1798618
邀请新用户注册赠送积分活动 877819
科研通“疑难数据库(出版商)”最低求助积分说明 806523