Progressive Perception Learning for Main Coronary Segmentation in X-Ray Angiography

分割 背景(考古学) 计算机科学 人工智能 特征(语言学) 计算机视觉 特征提取 感知 图像分割 模式识别(心理学) 心理学 古生物学 语言学 哲学 神经科学 生物
作者
Hong-Wei Zhang,Zhifan Gao,Dong Zhang,William Kongto Hau,Heye Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (3): 864-879 被引量:31
标识
DOI:10.1109/tmi.2022.3219126
摘要

Main coronary segmentation from the X-ray angiography images is important for the computer-aided diagnosis and treatment of coronary disease. However, it confronts the challenge at three different image granularities (the semantic, surrounding, and local levels). The challenge includes the semantic confusion between the main and collateral vessels, low contrast between the foreground vessel and background surroundings, and local ambiguity near the vessel boundaries. The traditional hand-crafted feature-based methods may be insufficient because they may lack the semantic relationship information and may not distinguish the main and collateral vessels. The existing deep learning-based methods seem to have issues due to the deficiency in the long-distance semantic relationship capture, the foreground and background interference adaptability, and the boundary detail information preservation. To solve the main coronary segmentation challenge, we propose the progressive perception learning (PPL) framework to inspect these three different image granularities. Specifically, the PPL contains the context, interference, and boundary perception modules. The context perception is designed to focus on the main coronary vessel based on the semantic dependence capture among different coronary segments. The interference perception is designed to purify the feature maps based on the foreground vessel enhancement and background artifact suppression. The boundary perception is designed to highlight the boundary details based on boundary feature extraction through the intersection between the foreground and background predictions. Extensive experiments on 1085 subjects show that the PPL is effective (e.g., the overall Dice is greater than 95%), and superior to thirteen state-of-the-art coronary segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
友好的季节完成签到,获得积分10
4秒前
wrr发布了新的文献求助10
5秒前
6秒前
Skywalker完成签到,获得积分10
6秒前
7秒前
8秒前
嘘嘘完成签到,获得积分10
8秒前
晓舟发布了新的文献求助10
8秒前
zy完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
小吃货完成签到,获得积分10
11秒前
xy发布了新的文献求助30
11秒前
江湖笑发布了新的文献求助10
12秒前
香蕉君达完成签到,获得积分10
12秒前
14秒前
kinzer完成签到 ,获得积分10
14秒前
14秒前
lx6869完成签到,获得积分10
15秒前
kingjames发布了新的文献求助10
15秒前
踏实的寒烟发布了新的文献求助200
15秒前
16秒前
共享精神应助小菜采纳,获得10
17秒前
19秒前
CatherineRR完成签到 ,获得积分10
19秒前
20秒前
ataybabdallah完成签到,获得积分20
20秒前
晓舟完成签到,获得积分10
20秒前
20秒前
小黄人完成签到,获得积分10
22秒前
嘿嘿完成签到,获得积分10
22秒前
多多就是小豆芽完成签到 ,获得积分20
23秒前
Diamond发布了新的文献求助10
23秒前
喜悦恶天发布了新的文献求助10
24秒前
研友_LN23OL发布了新的文献求助30
24秒前
小王爱喝可乐完成签到,获得积分20
24秒前
啊建发布了新的文献求助10
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260