Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys

材料科学 面子(社会学概念) 立方晶系 订单(交换) 化学物理 工程物理 凝聚态物理 财务 社会科学 物理 工程类 社会学 经济
作者
He Zhufeng,Yanxin Guo,Lifang Sun,Hai Yan,Xianjun Guan,S. Jiang,Y. R. Shen,Wen Yin,X. Zhao,Zhiming Li,Nan Jia
出处
期刊:Acta Materialia [Elsevier]
卷期号:243: 118495-118495 被引量:5
标识
DOI:10.1016/j.actamat.2022.118495
摘要

Multicomponent alloys of the Fe-Mn-Co-Cr-Ni family with face-centered cubic (fcc) structure exhibit many excellent properties. However, they usually show limited yield strength, which cannot meet the demand for practical applications. Here, we report a universal strategy for designing ultrastrong and ductile fcc multicomponent alloys, by introducing interstitial-driven local chemical order (LCO) through simple thermomechanical processing. In a prototype FeMnCoCrN multicomponent alloy processed by partial-recrystallization annealing, a high-density of fine laths containing interstitial-driven LCO domains (with both short- and medium-range orders) are predominant. Those laths evolve from planar dislocation slip bands promoted by the intrinsic short-range order of the alloy under prior cold deformation. Owing to the hardening effect of the LCO-laths, an ultra-high yield strength of 1.34 GPa is achieved, while deformation twinning contributes to a uniform elongation of 13.9%. This design strategy, which is also successfully verified in a multicomponent austenitic steel, provides a new paradigm for developing high-performance fcc materials at low cost. We propose an effective strategy for designing ultrastrong and ductile fcc multicomponent alloys, by introducing interstitial-driven local chemical order (LCO) through simple thermomechanical processing. The ultra-high yield strength benefits from profuse fine laths containing the LCO domains. This strategy, also verified in a multicomponent austenitic steel, provides a novel and universal paradigm for developing high-performance fcc materials at low cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小羊要加油完成签到,获得积分10
刚刚
Zzz发布了新的文献求助10
1秒前
1秒前
领导范儿应助木子采纳,获得10
1秒前
张佳明完成签到,获得积分10
2秒前
yar应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得50
3秒前
芝麻糊应助科研通管家采纳,获得10
3秒前
Leif应助科研通管家采纳,获得20
3秒前
慕青应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
苏静苒发布了新的文献求助10
4秒前
慕青应助自觉馒头采纳,获得10
4秒前
4秒前
4秒前
NexusExplorer应助Misty_采纳,获得10
5秒前
淡然向松发布了新的文献求助10
5秒前
汉堡包应助罗dd采纳,获得10
5秒前
研友_8KAP5n发布了新的文献求助10
6秒前
AdventureChen完成签到 ,获得积分10
6秒前
汉堡包应助清汤不加盐采纳,获得10
6秒前
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447914
求助须知:如何正确求助?哪些是违规求助? 3043709
关于积分的说明 8995581
捐赠科研通 2732147
什么是DOI,文献DOI怎么找? 1498659
科研通“疑难数据库(出版商)”最低求助积分说明 692846
邀请新用户注册赠送积分活动 690661