Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 算法 数学 哲学 基因 生物化学 语言学 化学 几何学
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105628-105628 被引量:63
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术蝗虫2726完成签到,获得积分10
刚刚
玉玉鼠发布了新的文献求助10
1秒前
ding应助li采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
小兵完成签到,获得积分10
1秒前
汐风应助机灵饼干采纳,获得10
1秒前
yyt完成签到,获得积分10
1秒前
李冰完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得30
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
脑洞疼应助duang采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
清脆语海发布了新的文献求助10
3秒前
ding应助322334采纳,获得10
3秒前
3秒前
wdddr发布了新的文献求助10
3秒前
王宁宁发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
DBP87弹完成签到 ,获得积分10
3秒前
3秒前
打打应助科研通管家采纳,获得10
4秒前
pengchen发布了新的文献求助10
4秒前
yznfly应助科研通管家采纳,获得30
4秒前
54发布了新的文献求助10
5秒前
5秒前
yiding完成签到 ,获得积分10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
lym发布了新的文献求助10
6秒前
思源应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
小马同学应助科研通管家采纳,获得10
6秒前
无脚鸟发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257403
求助须知:如何正确求助?哪些是违规求助? 4419507
关于积分的说明 13756551
捐赠科研通 4292770
什么是DOI,文献DOI怎么找? 2355654
邀请新用户注册赠送积分活动 1352106
关于科研通互助平台的介绍 1312849