Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 算法 数学 语言学 几何学 哲学 生物化学 化学 基因
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105628-105628 被引量:63
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬阳完成签到,获得积分10
1秒前
spcwlh完成签到 ,获得积分10
2秒前
milly发布了新的文献求助10
4秒前
5秒前
orixero应助积极的花卷采纳,获得10
6秒前
8秒前
孤独梦安完成签到 ,获得积分10
8秒前
脑洞疼应助竹蜻蜓采纳,获得10
10秒前
13秒前
coco完成签到 ,获得积分10
13秒前
aha发布了新的文献求助10
13秒前
zt完成签到,获得积分20
13秒前
酷波er应助12采纳,获得50
14秒前
沉静亦寒完成签到 ,获得积分10
17秒前
天天快乐应助nusaber采纳,获得10
18秒前
沉静凡松发布了新的文献求助10
18秒前
烟花应助云海采纳,获得10
19秒前
21秒前
21秒前
21秒前
doudou完成签到 ,获得积分10
22秒前
西瓜撞地球完成签到 ,获得积分10
22秒前
afar完成签到,获得积分10
22秒前
aha完成签到,获得积分10
24秒前
25秒前
afar发布了新的文献求助10
26秒前
26秒前
冷傲含海发布了新的文献求助10
27秒前
zhaoyuli完成签到,获得积分10
27秒前
云海发布了新的文献求助10
31秒前
警察同志听我解释完成签到,获得积分10
31秒前
32秒前
山谷完成签到,获得积分10
32秒前
flyingpig完成签到,获得积分10
33秒前
syh5527029完成签到 ,获得积分10
34秒前
34秒前
彭于晏应助盛夏采纳,获得10
35秒前
35秒前
冷傲松鼠完成签到 ,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560834
求助须知:如何正确求助?哪些是违规求助? 4646178
关于积分的说明 14677685
捐赠科研通 4587278
什么是DOI,文献DOI怎么找? 2516949
邀请新用户注册赠送积分活动 1490355
关于科研通互助平台的介绍 1461160