Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 数学 几何学 语言学 生物化学 基因 哲学 化学
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105628-105628 被引量:42
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助angzhang采纳,获得10
刚刚
傻傻的皮皮虾关注了科研通微信公众号
刚刚
1秒前
1秒前
FashionBoy应助李哈哈采纳,获得10
1秒前
小马甲应助机灵的胡萝卜采纳,获得10
1秒前
1秒前
LMW应助明亮的代灵采纳,获得10
1秒前
英勇幻翠发布了新的文献求助10
2秒前
3秒前
搜集达人应助落尘采纳,获得10
3秒前
3秒前
4秒前
燕真完成签到,获得积分10
4秒前
何公主发布了新的文献求助10
4秒前
4秒前
蕪菑完成签到 ,获得积分10
4秒前
YL发布了新的文献求助10
5秒前
5秒前
Blueyi发布了新的文献求助10
5秒前
桐桐应助甜蜜念真采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
梁成伟发布了新的文献求助10
6秒前
Jasper应助斑驳采纳,获得10
7秒前
Aoren完成签到,获得积分10
7秒前
pupil完成签到,获得积分10
7秒前
7秒前
Jasper应助婉君采纳,获得10
8秒前
十五发布了新的文献求助10
8秒前
hsj完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
9秒前
鲸鱼发布了新的文献求助10
10秒前
果汁有点甜完成签到,获得积分10
10秒前
Ava应助悲凉的孤萍采纳,获得10
10秒前
研友_ngqQE8完成签到,获得积分10
10秒前
10秒前
Master_Ye发布了新的文献求助10
10秒前
晚晚发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437