已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 数学 几何学 语言学 生物化学 基因 哲学 化学
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105628-105628 被引量:42
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shaylie完成签到 ,获得积分10
3秒前
zhu发布了新的文献求助10
3秒前
在水一方应助miemie采纳,获得30
5秒前
9秒前
111完成签到 ,获得积分10
12秒前
笨笨薯片关注了科研通微信公众号
13秒前
俊逸的无心完成签到,获得积分10
14秒前
叶潭完成签到,获得积分10
15秒前
16秒前
18秒前
NiceSunnyDay完成签到 ,获得积分10
18秒前
Magali应助啤酒白菜采纳,获得30
19秒前
ty完成签到 ,获得积分10
20秒前
eric888完成签到,获得积分0
20秒前
king完成签到 ,获得积分10
20秒前
douhao完成签到 ,获得积分10
21秒前
minnie完成签到 ,获得积分10
21秒前
好运锦鲤完成签到 ,获得积分10
23秒前
26秒前
谨慎颜演完成签到 ,获得积分10
28秒前
CXLan完成签到 ,获得积分10
30秒前
研友_ZGR70n完成签到 ,获得积分10
31秒前
桃子呐发布了新的文献求助10
31秒前
wang完成签到,获得积分10
32秒前
大可完成签到 ,获得积分10
37秒前
cun完成签到,获得积分10
39秒前
宇宇完成签到 ,获得积分10
40秒前
41秒前
芝士奶盖有点咸完成签到 ,获得积分10
41秒前
44秒前
哦哦哦完成签到 ,获得积分10
44秒前
耀阳完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
Ava应助一块小饼干采纳,获得10
48秒前
ref:rain完成签到,获得积分10
49秒前
顾矜应助momo102610采纳,获得10
50秒前
LTJ发布了新的文献求助30
53秒前
老天师一巴掌完成签到 ,获得积分10
53秒前
假期会发芽完成签到 ,获得积分10
56秒前
OCDer完成签到,获得积分0
57秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959957
求助须知:如何正确求助?哪些是违规求助? 3506202
关于积分的说明 11128332
捐赠科研通 3238193
什么是DOI,文献DOI怎么找? 1789549
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042