Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 算法 数学 语言学 几何学 哲学 生物化学 化学 基因
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105628-105628 被引量:63
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cranberry完成签到,获得积分10
1秒前
高挑的向真完成签到,获得积分10
1秒前
ZZ0901完成签到,获得积分10
1秒前
PWQ完成签到,获得积分10
1秒前
于yu完成签到 ,获得积分10
1秒前
乐观耳机发布了新的文献求助30
2秒前
furong完成签到 ,获得积分10
2秒前
小小咸鱼发布了新的文献求助10
2秒前
渭水飞熊完成签到,获得积分10
2秒前
momo19发布了新的文献求助10
3秒前
科研通AI2S应助封夜采纳,获得10
3秒前
田様应助夏夏采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
www发布了新的文献求助10
4秒前
PWQ发布了新的文献求助10
4秒前
4秒前
受伤菲音发布了新的文献求助10
4秒前
华仔应助yuanji,zheng采纳,获得10
5秒前
子川完成签到,获得积分10
5秒前
酥山完成签到,获得积分10
5秒前
JTHan完成签到,获得积分10
6秒前
实验耗材完成签到 ,获得积分10
6秒前
补药学习完成签到,获得积分10
6秒前
6秒前
传奇3应助洽洽瓜子shine采纳,获得10
6秒前
嗝嗝完成签到,获得积分10
6秒前
7秒前
7秒前
miaomiao完成签到,获得积分10
7秒前
Charon发布了新的文献求助30
7秒前
agrlook完成签到,获得积分10
8秒前
8秒前
DQQ完成签到,获得积分10
8秒前
MR_Z完成签到,获得积分10
8秒前
8秒前
123完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005