Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 数学 语言学 几何学 哲学 生物化学 化学 基因
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105628-105628 被引量:42
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌陌完成签到,获得积分10
刚刚
刚刚
爆米花应助hahhh7采纳,获得10
刚刚
桐桐应助pink采纳,获得10
刚刚
2秒前
Fan完成签到,获得积分10
3秒前
honeyoko发布了新的文献求助10
5秒前
一裤子灰完成签到,获得积分10
6秒前
duo完成签到,获得积分10
6秒前
茉莉完成签到,获得积分20
7秒前
8秒前
9秒前
10秒前
今后应助LL采纳,获得10
11秒前
啦啦啦哟完成签到,获得积分10
12秒前
vivian26发布了新的文献求助10
12秒前
嗯哼应助清脆松采纳,获得20
12秒前
linxi完成签到,获得积分10
12秒前
合适的不言应助minidong采纳,获得10
12秒前
14秒前
15秒前
16秒前
564654SDA完成签到,获得积分10
17秒前
个性的紫菜应助苏航采纳,获得10
19秒前
20秒前
20秒前
GU发布了新的文献求助10
22秒前
史一帆发布了新的文献求助10
22秒前
yufanhui完成签到,获得积分0
22秒前
23秒前
24秒前
qs完成签到,获得积分10
24秒前
李健的小迷弟应助564654SDA采纳,获得10
24秒前
哇塞菌菌发布了新的文献求助10
26秒前
半信美玉发布了新的文献求助10
26秒前
27秒前
27秒前
starry完成签到 ,获得积分10
29秒前
LL发布了新的文献求助10
29秒前
史一帆完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012