已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 算法 数学 语言学 几何学 哲学 生物化学 化学 基因
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105628-105628 被引量:63
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
白露发布了新的文献求助10
6秒前
6秒前
沉默的烤鸡完成签到,获得积分10
6秒前
领导范儿应助RC采纳,获得10
7秒前
烟花应助Sinner采纳,获得10
8秒前
Allurin完成签到 ,获得积分10
8秒前
10秒前
巫马尔槐发布了新的文献求助30
11秒前
李健的小迷弟应助哈哈哈采纳,获得10
12秒前
jojo发布了新的文献求助10
12秒前
科研通AI6应助拉长的人雄采纳,获得10
13秒前
JamesPei应助牧笛采纳,获得10
13秒前
驼鹿队长完成签到,获得积分10
15秒前
ding应助Ni采纳,获得10
16秒前
16秒前
科研通AI6应助抹茶木木采纳,获得10
18秒前
19秒前
LJP发布了新的文献求助10
19秒前
科目三应助nicholas采纳,获得10
20秒前
HHH完成签到 ,获得积分10
20秒前
21秒前
imagine完成签到,获得积分10
21秒前
22秒前
安详的海风完成签到,获得积分10
24秒前
Ni发布了新的文献求助10
24秒前
张某某完成签到,获得积分10
24秒前
25秒前
26秒前
打打应助LJP采纳,获得10
26秒前
完美世界应助彬彬采纳,获得10
27秒前
科研通AI6应助悬铃木采纳,获得10
27秒前
29秒前
29秒前
30秒前
JM发布了新的文献求助10
30秒前
酷波er应助云澈采纳,获得10
31秒前
31秒前
爱lx完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558