Development of a cross-scale weighted feature fusion network for hot-rolled steel surface defect detection

锐化 计算机科学 棱锥(几何) 稳健性(进化) 人工智能 模式识别(心理学) 特征(语言学) 聚类分析 融合 算法 数学 哲学 基因 生物化学 语言学 化学 几何学
作者
Yuzhong Zhang,Wenjing Wang,Zhaoming Li,Shuangbao Shu,Xianli Lang,Tengda Zhang,Jingtao Dong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105628-105628 被引量:63
标识
DOI:10.1016/j.engappai.2022.105628
摘要

Surface defects of hot-rolled steel would affect the performance and appearance of the final products. In order to detect steel surface defects efficiently, a cross-scale weighted feature fusion network for identifying defect categories and locating defects is proposed in this work. Combined with Laplace sharpening, the backbone in the YOLOv5s model is used to extract multi-scale defect features from input images. And then, an improved weighted bi-directional feature pyramid network embedded with residual modules is proposed to aggregate multi-scale feature maps for enhancing the robustness of multi-size defect representation. Finally, four prediction branches accompanied with prior bounding boxes by a k-means clustering algorithm are responsible for predicting defects with different sizes. The proposed detection network is verified on the NEU-DET dataset, and experimental results show that the proposed network can achieve 86.8% mAP with the IoU threshold of 0.5, and can efficiently process images at 51 fps with the RGB image size 640 × 640. The Laplace sharpening module, the k_means clustering module and the improved C3-BiFPN module all contribute to the improvement of performance (mAP) of the proposed network by 1.8%, 2.7% and 3.8%, respectively. Our experimental results demonstrate that the proposed framework can effectively detect the surface defects of hot-rolled steel, and has potential to be used for real-time surface defect detection. Meanwhile, the versatility of the proposed network for other types of defect detection is also evaluated on the MT dataset and the DAGM dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Lucas应助乐多采纳,获得10
刚刚
科研通AI6应助解美霞采纳,获得10
刚刚
1秒前
Arthur完成签到 ,获得积分10
2秒前
冇_完成签到 ,获得积分10
2秒前
卢西完成签到,获得积分10
2秒前
今后应助asdf采纳,获得10
3秒前
merlin完成签到,获得积分10
4秒前
4秒前
jck完成签到,获得积分10
5秒前
栾仪婷完成签到,获得积分20
5秒前
choup53完成签到,获得积分10
6秒前
伶俐寒凡发布了新的文献求助10
7秒前
阳光的麦片完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
10秒前
11秒前
杨涵发布了新的文献求助10
12秒前
xyz完成签到,获得积分10
12秒前
失眠语海完成签到,获得积分10
12秒前
15秒前
大模型应助云为晓采纳,获得10
15秒前
默认用户名完成签到,获得积分10
16秒前
16秒前
asdf发布了新的文献求助10
16秒前
闪闪的梦柏完成签到 ,获得积分10
16秒前
jiangchuansm完成签到,获得积分10
17秒前
shenhaoran完成签到,获得积分10
17秒前
yaya完成签到,获得积分20
19秒前
淡然的念珍完成签到 ,获得积分10
19秒前
NNUsusan完成签到 ,获得积分10
20秒前
1499yqq完成签到,获得积分20
21秒前
21秒前
21秒前
21秒前
顾矜应助王治豪采纳,获得10
21秒前
风清扬应助GFR采纳,获得10
23秒前
ColdSunWu完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498827
求助须知:如何正确求助?哪些是违规求助? 4595945
关于积分的说明 14451224
捐赠科研通 4528971
什么是DOI,文献DOI怎么找? 2481784
邀请新用户注册赠送积分活动 1465774
关于科研通互助平台的介绍 1438730