A relax-and-fix Pareto-based algorithm for a bi-objective vaccine distribution network considering a mix-and-match strategy in pandemics

数学优化 启发式 计算机科学 帕累托原理 多目标优化 还原(数学) 算法 数学 几何学
作者
Alireza Nikoubin,Mehdi Mahnam,Ghasem Moslehi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:132: 109862-109862 被引量:6
标识
DOI:10.1016/j.asoc.2022.109862
摘要

Mass vaccination in pandemics is one of the most effective strategies to halt disease transmission. A well-organized vaccination plan is essential for guaranteeing its success in cases with limited vaccines. On the other hand, most vaccines need more than one dose for appropriate immunity, intensifying the vaccine shortage probability and complicating decision-making. This study presents a bi-objective mixed-integer linear model for a vaccine distribution chain problem, simultaneously considering economic and social objectives, with multi-dose vaccination adaptable even for booster doses. Moreover, the compatible vaccines in each vaccination process are considered a mix-and-match strategy to diversify vaccination alternatives and alleviate the vaccine shortage risk. It is shown that the problem is NP-hard, and we develop two heuristic and meta-heuristic algorithms to solve real-size instances in a reasonable time. Both algorithms use problem size reduction and problem decomposition techniques to produce an approximate Pareto front for the problem. The heuristic algorithm employs relax-and-fix and fix-and-optimize techniques, and an epsilon-constraint method to solve the multi-objective problem. The proposed meta-heuristic algorithm is based on the hybrid of two well-known evolutionary algorithms, particle swarm optimization, and genetic algorithm. It also uses a multi-objective framework called PESA-II to generate the Pareto front. Both proposed heuristic and meta-heuristic algorithms can employ parallel computing, which significantly reduces computational time. Finally, we investigate the proposed algorithms’ performance using 30 random problem instances and a case study from Iran. The results demonstrate that heuristic and meta-heuristic algorithms have obtained a reasonable solution with a maximum of 6.9% and 16.3% cost objective function gap respectively. The heuristic algorithm is superior to the meta-heuristic in terms of Pareto front quality metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈比发布了新的文献求助10
1秒前
Kamal完成签到,获得积分10
1秒前
7777juju完成签到,获得积分10
2秒前
TT完成签到,获得积分10
2秒前
饼饼发布了新的文献求助10
2秒前
打打应助淡定小蜜蜂采纳,获得10
2秒前
马海鑫发布了新的文献求助10
3秒前
4秒前
6秒前
7秒前
TT发布了新的文献求助10
7秒前
nihaolaojiu完成签到,获得积分10
9秒前
饼饼完成签到,获得积分10
9秒前
禹无极发布了新的文献求助10
9秒前
青苹果味美年达完成签到 ,获得积分10
9秒前
10秒前
314gjj完成签到,获得积分10
10秒前
善学以致用应助康康采纳,获得10
10秒前
11秒前
2020完成签到,获得积分10
11秒前
浑灵安完成签到 ,获得积分10
11秒前
12秒前
cc完成签到,获得积分10
12秒前
wenbo完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
17秒前
顾矜应助迪迦奥特曼采纳,获得10
19秒前
奋斗忆灵发布了新的文献求助10
19秒前
20秒前
ghl发布了新的文献求助10
20秒前
20秒前
qll完成签到,获得积分10
20秒前
20秒前
21秒前
川农辅导员完成签到,获得积分10
23秒前
康康发布了新的文献求助10
25秒前
奋斗忆灵完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795306
关于积分的说明 7814169
捐赠科研通 2451255
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413