亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A relax-and-fix Pareto-based algorithm for a bi-objective vaccine distribution network considering a mix-and-match strategy in pandemics

数学优化 启发式 计算机科学 帕累托原理 多目标优化 还原(数学) 算法 数学 几何学
作者
Alireza Nikoubin,Mehdi Mahnam,Ghasem Moslehi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:132: 109862-109862 被引量:6
标识
DOI:10.1016/j.asoc.2022.109862
摘要

Mass vaccination in pandemics is one of the most effective strategies to halt disease transmission. A well-organized vaccination plan is essential for guaranteeing its success in cases with limited vaccines. On the other hand, most vaccines need more than one dose for appropriate immunity, intensifying the vaccine shortage probability and complicating decision-making. This study presents a bi-objective mixed-integer linear model for a vaccine distribution chain problem, simultaneously considering economic and social objectives, with multi-dose vaccination adaptable even for booster doses. Moreover, the compatible vaccines in each vaccination process are considered a mix-and-match strategy to diversify vaccination alternatives and alleviate the vaccine shortage risk. It is shown that the problem is NP-hard, and we develop two heuristic and meta-heuristic algorithms to solve real-size instances in a reasonable time. Both algorithms use problem size reduction and problem decomposition techniques to produce an approximate Pareto front for the problem. The heuristic algorithm employs relax-and-fix and fix-and-optimize techniques, and an epsilon-constraint method to solve the multi-objective problem. The proposed meta-heuristic algorithm is based on the hybrid of two well-known evolutionary algorithms, particle swarm optimization, and genetic algorithm. It also uses a multi-objective framework called PESA-II to generate the Pareto front. Both proposed heuristic and meta-heuristic algorithms can employ parallel computing, which significantly reduces computational time. Finally, we investigate the proposed algorithms’ performance using 30 random problem instances and a case study from Iran. The results demonstrate that heuristic and meta-heuristic algorithms have obtained a reasonable solution with a maximum of 6.9% and 16.3% cost objective function gap respectively. The heuristic algorithm is superior to the meta-heuristic in terms of Pareto front quality metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ionicliquids发布了新的文献求助10
3秒前
Jy完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
赫如冰完成签到 ,获得积分10
34秒前
52秒前
52秒前
52秒前
555557完成签到,获得积分10
53秒前
聂青枫完成签到,获得积分10
56秒前
黄黄黄应助Mannone采纳,获得10
57秒前
1分钟前
1分钟前
555557发布了新的文献求助10
1分钟前
Liufgui应助Mannone采纳,获得10
1分钟前
1分钟前
hahah发布了新的文献求助10
1分钟前
小宋应助hahah采纳,获得20
1分钟前
hahah完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
毓雅完成签到,获得积分10
1分钟前
1分钟前
雨过天晴发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
李健应助雨过天晴采纳,获得10
2分钟前
firesquall完成签到,获得积分10
2分钟前
顺利凡蕾发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
顺利凡蕾完成签到,获得积分10
2分钟前
binyao2024完成签到,获得积分10
2分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
oldcat96发布了新的文献求助10
3分钟前
3分钟前
思源应助oldcat96采纳,获得10
3分钟前
猕猴桃发布了新的文献求助30
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008132
求助须知:如何正确求助?哪些是违规求助? 3547942
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188