Perceived emotions and AU combinations in ambiguous facial expressions

面部表情 心理学 计算机科学 人工智能 认知心理学 自然语言处理 模式识别(心理学) 语音识别 沟通 数学
作者
Wen-Jing Yan,Qian-Nan Ruan,Xiaolan Fu,Yuqi Sun
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:164: 74-80 被引量:1
标识
DOI:10.1016/j.patrec.2022.10.018
摘要

• Network analysis depicts the emotion-network and the surprise is the most repulsive to other emotions. • AU25 and related mouth-open actions are the center of the AU-network. • Matrix calculation found that AU25 weights first in contributing to perceived emotion. • AU4 and AU25 are most frequently presented in the common ambiguous facial expressions Ambiguous facial expressions are common and cannot be classified as specifically prototypical or compound in nature. We have very little understanding of the relationships connecting such expressions to perceived human emotions, such as in terms of compatibility or repulsion. This ignorance also exists with regards to their relationship to action units (AUs). This research employed network analysis to depict the network of perceived emotions and AUs in nearly 5,000 facial expressions obtained from the RAF-AU database, and calculated the centrality indices. We then used a matrix calculation to analyze the relationships between AU combinations and perceived emotions to better understand how people interpret the actions appearing on faces. The results showed that: (1) surprise was the most repulsive to other emotions in the emotion network, (2) AU25 and related open-mouth actions comprised the center of the AU network, (3) AU25 was weighted first in terms of contributing to perceived emotion, and (4) AU4 and AU25 were the most frequently presented in common ambiguous facial expressions. The results were not consistent with those of previous research, mainly due to differences in research methods and materials. The results imply that emotions perceived from ambiguous facial expressions cannot be predicted by core AUs of prototypical facial expressions. The implications and limitations of these conclusions are also discussed herein.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘西西发布了新的文献求助10
2秒前
火力全开完成签到,获得积分10
2秒前
幽默傲儿完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
芋泥芝士完成签到,获得积分10
5秒前
852应助哔哩哔哩哔哔哔采纳,获得30
5秒前
淡定的勒应助Mary采纳,获得10
6秒前
6秒前
顺顺利利完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
科目三应助科研通管家采纳,获得10
10秒前
liuce0307发布了新的文献求助10
10秒前
大蛋老师应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得30
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
Young应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
大蛋老师应助科研通管家采纳,获得10
11秒前
谭阿面完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
背后思卉应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得30
11秒前
大蛋老师应助科研通管家采纳,获得10
11秒前
11秒前
能干的孤丝完成签到,获得积分10
12秒前
cwy完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593859
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811189
捐赠科研通 4645218
什么是DOI,文献DOI怎么找? 2534702
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469430