Digital twin-driven intelligent assessment of gear surface degradation

降级(电信) 汽车工程 过程(计算) 催交 根本原因 可靠性工程 传输(电信) 机制(生物学) 工程类 计算机科学 电子工程 系统工程 认识论 操作系统 电气工程 哲学
作者
Ke Feng,Jinchen Ji,Yongchao Zhang,Qing Ni,Zheng Liu,Michael Beer
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:186: 109896-109896 被引量:298
标识
DOI:10.1016/j.ymssp.2022.109896
摘要

Gearbox has a compact structure, a stable transmission capability, and a high transmission efficiency. Thus, it is widely applied as a power transmission system in various applications, such as wind turbines, industrial machinery, aircraft, space vehicles, and land vehicles. The gearbox usually operates in harsh and non-stationary working environments, expediting the degradation process of the gear surface. The degradation process may lead to severe gear failures, such as tooth breakage and root crack, which could damage the gear transmission system. Therefore, it is essential to assess the progression of gear surface degradation in order to ensure a reliable operation. The digital twin is an emerging technology for machine health management. A high-fidelity digital twin model can help reflect the operation status of the gearbox and reveal the corresponding degradation mechanism, which could benefit the remaining useful life (RUL) prediction and the predictive maintenance-based decision-making framework. This paper develops a digital twin-driven intelligent health management method to monitor and assess the gear surface degradation progression. The developed method can effectively reveal the gear wear propagation characteristics and predict the RUL accurately. Furthermore, the knowledge learned from digital twin models can be well transferred to the surface wear assessment of the physical gearbox in wide industrial applications, which is of great practical significance. Two endurance tests with different dominant degradation mechanisms were conducted to validate the effectiveness of the proposed methodology for gear wear assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助酷酷问薇采纳,获得10
刚刚
1234发布了新的文献求助10
刚刚
rixinsu发布了新的文献求助10
1秒前
1秒前
1秒前
超帅的南珍完成签到,获得积分10
1秒前
1秒前
虚幻蹇完成签到,获得积分10
1秒前
冷傲的薯片完成签到 ,获得积分10
2秒前
Jasper应助karL采纳,获得10
2秒前
mirrovo发布了新的文献求助100
2秒前
2秒前
英姑应助无私的紫文采纳,获得10
2秒前
大个应助rixinsu采纳,获得10
5秒前
恣意发布了新的文献求助10
6秒前
6秒前
星辰大海应助失眠的寄翠采纳,获得10
6秒前
6秒前
wanci应助zzx采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
慈祥的傲安完成签到,获得积分20
7秒前
8秒前
树上香蕉果完成签到,获得积分10
9秒前
午夜煎饼完成签到 ,获得积分10
9秒前
9秒前
小马完成签到,获得积分10
10秒前
fei应助jssssssss采纳,获得30
10秒前
依恋发布了新的文献求助10
10秒前
10秒前
NIBABA完成签到,获得积分10
11秒前
微笑的觅露完成签到 ,获得积分10
11秒前
11秒前
陈槊诸发布了新的文献求助10
11秒前
虚拟的以南完成签到,获得积分10
12秒前
Daty发布了新的文献求助10
12秒前
12秒前
李健的小迷弟应助John_Xiong采纳,获得10
12秒前
张朝欣完成签到,获得积分10
12秒前
科研通AI6应助huangyi采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379