重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Digital twin-driven intelligent assessment of gear surface degradation

降级(电信) 汽车工程 过程(计算) 催交 根本原因 可靠性工程 传输(电信) 机制(生物学) 工程类 计算机科学 电子工程 系统工程 认识论 操作系统 电气工程 哲学
作者
Ke Feng,Jinchen Ji,Yongchao Zhang,Qing Ni,Zheng Liu,Michael Beer
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:186: 109896-109896 被引量:298
标识
DOI:10.1016/j.ymssp.2022.109896
摘要

Gearbox has a compact structure, a stable transmission capability, and a high transmission efficiency. Thus, it is widely applied as a power transmission system in various applications, such as wind turbines, industrial machinery, aircraft, space vehicles, and land vehicles. The gearbox usually operates in harsh and non-stationary working environments, expediting the degradation process of the gear surface. The degradation process may lead to severe gear failures, such as tooth breakage and root crack, which could damage the gear transmission system. Therefore, it is essential to assess the progression of gear surface degradation in order to ensure a reliable operation. The digital twin is an emerging technology for machine health management. A high-fidelity digital twin model can help reflect the operation status of the gearbox and reveal the corresponding degradation mechanism, which could benefit the remaining useful life (RUL) prediction and the predictive maintenance-based decision-making framework. This paper develops a digital twin-driven intelligent health management method to monitor and assess the gear surface degradation progression. The developed method can effectively reveal the gear wear propagation characteristics and predict the RUL accurately. Furthermore, the knowledge learned from digital twin models can be well transferred to the surface wear assessment of the physical gearbox in wide industrial applications, which is of great practical significance. Two endurance tests with different dominant degradation mechanisms were conducted to validate the effectiveness of the proposed methodology for gear wear assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助语芙采纳,获得10
刚刚
刚刚
听雨轩完成签到,获得积分10
1秒前
1秒前
1秒前
eternal完成签到,获得积分10
1秒前
1秒前
呱啦呱啦发布了新的文献求助10
1秒前
安德鲁完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
sklz完成签到,获得积分10
4秒前
aikeyan完成签到 ,获得积分10
4秒前
Ning完成签到,获得积分10
4秒前
欢喜可愁发布了新的文献求助10
4秒前
4秒前
4秒前
乔乔完成签到,获得积分10
5秒前
moerr完成签到,获得积分10
5秒前
5秒前
Loki发布了新的文献求助10
5秒前
RRRabbit发布了新的文献求助10
5秒前
吃吃吃完成签到,获得积分20
5秒前
南边的海发布了新的文献求助10
5秒前
6秒前
科研通AI6应助鳗鱼雨寒采纳,获得10
6秒前
6秒前
6秒前
发顺丰发布了新的文献求助10
6秒前
7秒前
啊TiP发布了新的文献求助10
7秒前
7秒前
景Q同学完成签到,获得积分10
7秒前
乔乔发布了新的文献求助10
7秒前
酷炫的天问完成签到,获得积分10
7秒前
Ava应助少艾采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567