电解质
阴极
相容性(地球化学)
材料科学
双层
环氧乙烷
化学工程
阳极
固态
氧化物
无机化学
膜
化学
电极
复合材料
聚合物
物理化学
冶金
工程类
生物化学
共聚物
作者
Qingyue Han,Suqing Wang,Wenhan Kong,Wenhao Ren,Yangxi Liu,Haihui Wang
标识
DOI:10.1016/j.cej.2022.140104
摘要
• A bilayer PEO electrolyte with different lithium salts is constructed. • The design of bilayer electrolytes facilitates interfacial compatibility with the cathode at high voltage. • The assembled ASSLBs have achieved highly improved cycling stability. Poly (ethylene oxide) (PEO) is easily oxidized at the cathode interface when coupled with high voltage cathodes (such as LiCoO 2 ), leading to rapid capacity fade, limiting its application in high energy density all-solid-state battery. In this work, a bilayer concept is applied to design two PEO electrolyte layers composited with lithium difluoro (oxalato) borate (LiDFOB) and lithium bis(trifluoromethane sulfonyl) imide (LiTFSI), respectively. The thin PEO/LiDFOB layer is introduced by directly dropping the PEO/LiDFOB solution on the LiCoO 2 cathode surface to construct a closely contact interphase. Meanwhile, a stable cathode electrolyte interphase (CEI) containing Li x B x O y and LiF formed during electrochemical cycling realizes the LiCoO 2 /PEO interfacial compatibility. The self-generated PEO/LiTFSI layer towards the anode side provides high ionic conductivity and stabilizes the Li/electrolyte interface. As a result, the assembled cell using the bilayer PEO electrolyte achieves good cycling stability, the capacity retention increases from 15% to 75% after 100 cycles at 0.2 C. The enhanced electrochemical performance is also achieved in LiNi 0.6 Co 0.2 Mn 0.2 O 2 /Li cell using this bilayer PEO electrolyte architecture. This work provides a simple strategy to make high-voltage cathode compatible with PEO electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI