Realizing compatibility of high voltage cathode and poly (ethylene oxide) electrolyte in all-solid-state lithium batteries by bilayer electrolyte design

电解质 阴极 相容性(地球化学) 材料科学 双层 环氧乙烷 化学工程 阳极 固态 氧化物 无机化学 化学 电极 复合材料 聚合物 物理化学 冶金 工程类 生物化学 共聚物
作者
Qingyue Han,Suqing Wang,Wenhan Kong,Wenhao Ren,Yangxi Liu,Haihui Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:454: 140104-140104 被引量:14
标识
DOI:10.1016/j.cej.2022.140104
摘要

• A bilayer PEO electrolyte with different lithium salts is constructed. • The design of bilayer electrolytes facilitates interfacial compatibility with the cathode at high voltage. • The assembled ASSLBs have achieved highly improved cycling stability. Poly (ethylene oxide) (PEO) is easily oxidized at the cathode interface when coupled with high voltage cathodes (such as LiCoO 2 ), leading to rapid capacity fade, limiting its application in high energy density all-solid-state battery. In this work, a bilayer concept is applied to design two PEO electrolyte layers composited with lithium difluoro (oxalato) borate (LiDFOB) and lithium bis(trifluoromethane sulfonyl) imide (LiTFSI), respectively. The thin PEO/LiDFOB layer is introduced by directly dropping the PEO/LiDFOB solution on the LiCoO 2 cathode surface to construct a closely contact interphase. Meanwhile, a stable cathode electrolyte interphase (CEI) containing Li x B x O y and LiF formed during electrochemical cycling realizes the LiCoO 2 /PEO interfacial compatibility. The self-generated PEO/LiTFSI layer towards the anode side provides high ionic conductivity and stabilizes the Li/electrolyte interface. As a result, the assembled cell using the bilayer PEO electrolyte achieves good cycling stability, the capacity retention increases from 15% to 75% after 100 cycles at 0.2 C. The enhanced electrochemical performance is also achieved in LiNi 0.6 Co 0.2 Mn 0.2 O 2 /Li cell using this bilayer PEO electrolyte architecture. This work provides a simple strategy to make high-voltage cathode compatible with PEO electrolyte.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲍勃完成签到,获得积分10
1秒前
勤恳的从波完成签到,获得积分20
3秒前
余南发布了新的文献求助10
3秒前
虚幻身影完成签到 ,获得积分10
3秒前
打打应助科研通管家采纳,获得10
3秒前
q1356478314应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得20
3秒前
Hello应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
1111应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
英俊的铭应助Amanda采纳,获得10
5秒前
中和皇极应助11111采纳,获得10
5秒前
大白完成签到 ,获得积分10
6秒前
6秒前
等风吹完成签到,获得积分20
7秒前
7秒前
8秒前
kkt完成签到,获得积分10
8秒前
一见憘完成签到 ,获得积分10
9秒前
9秒前
大白关注了科研通微信公众号
9秒前
陈隆发布了新的文献求助10
11秒前
小马甲应助rudjs采纳,获得10
13秒前
祎橘发布了新的文献求助10
13秒前
jyy发布了新的文献求助200
13秒前
13秒前
顾矜应助GGbound采纳,获得10
14秒前
万能图书馆应助尊敬寒松采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662