Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection

偏最小二乘回归 均方误差 高光谱成像 遥感 RGB颜色模型 叶绿素 近似误差 数学 环境科学 人工智能 化学 计算机科学 统计 地质学 有机化学
作者
Lianxiang Gong,Chenxi Zhu,Yifeng Luo,Xiaping Fu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:77 (2): 200-209 被引量:9
标识
DOI:10.1177/00037028221139871
摘要

Chlorophyll is one of the most important pigments in plants, and the measurement of chlorophyll levels enables real-time monitoring of plant growth, which is of great importance to the vegetation monitoring. Compared with the high cost and time-consuming operation of hyperspectral imaging technique, the spectral reflectance reconstruction technique based on RGB images has the advantages of being inexpensive and fast. In this study, using the example of ginkgo leaves, the spectra were reconstructed from red-green-blue (RGB) images taken by smartphones based on a back propagation (BP) neural network and pseudo-inverse method. Based on a BP neural network, the maximum absolute error between the reconstructed spectra and the reference spectra acquired by the hyperspectral camera was less than 0.038. A partial least squares regression (PLSR) prediction model for chlorophyll content estimation was established using the reconstructed spectra. The R2 and root mean square error (RMSE) of the validation set were 0.8237 and 1.1895%, respectively, there was a high correlation between predicted and measured values. Compared with the pseudo-inverse method, the maximum absolute error of the reconstructed spectra was reduced by 10.9%, the R2 in the chlorophyll prediction results was improved by 12.7%, and the RMSE was reduced by 19.3%. This research showed that reconstructing spectral reflectance based on RGB images can realize real-time measurement of chlorophyll content. It provided a reliable tool for fast and low-cost monitoring of plant physiology and growth conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
刚刚
灵舒完成签到,获得积分10
刚刚
扬帆远航应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Deq完成签到,获得积分10
1秒前
eno完成签到,获得积分10
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
1111应助科研通管家采纳,获得10
2秒前
于是完成签到 ,获得积分10
2秒前
实验顺利应助Gavin采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
yhy完成签到,获得积分10
2秒前
2秒前
3秒前
1111应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
鲤鱼白玉完成签到,获得积分10
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
扬帆远航应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
扬帆远航应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027