Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection

偏最小二乘回归 均方误差 高光谱成像 遥感 RGB颜色模型 叶绿素 近似误差 数学 环境科学 人工智能 化学 计算机科学 统计 地质学 有机化学
作者
Lianxiang Gong,Chenxi Zhu,Yifeng Luo,Xiaping Fu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:77 (2): 200-209 被引量:9
标识
DOI:10.1177/00037028221139871
摘要

Chlorophyll is one of the most important pigments in plants, and the measurement of chlorophyll levels enables real-time monitoring of plant growth, which is of great importance to the vegetation monitoring. Compared with the high cost and time-consuming operation of hyperspectral imaging technique, the spectral reflectance reconstruction technique based on RGB images has the advantages of being inexpensive and fast. In this study, using the example of ginkgo leaves, the spectra were reconstructed from red-green-blue (RGB) images taken by smartphones based on a back propagation (BP) neural network and pseudo-inverse method. Based on a BP neural network, the maximum absolute error between the reconstructed spectra and the reference spectra acquired by the hyperspectral camera was less than 0.038. A partial least squares regression (PLSR) prediction model for chlorophyll content estimation was established using the reconstructed spectra. The R2 and root mean square error (RMSE) of the validation set were 0.8237 and 1.1895%, respectively, there was a high correlation between predicted and measured values. Compared with the pseudo-inverse method, the maximum absolute error of the reconstructed spectra was reduced by 10.9%, the R2 in the chlorophyll prediction results was improved by 12.7%, and the RMSE was reduced by 19.3%. This research showed that reconstructing spectral reflectance based on RGB images can realize real-time measurement of chlorophyll content. It provided a reliable tool for fast and low-cost monitoring of plant physiology and growth conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嵇老五发布了新的文献求助10
刚刚
Zhusy发布了新的文献求助10
1秒前
小丸子的樱桃红完成签到,获得积分10
1秒前
善良咖啡发布了新的文献求助10
2秒前
piao完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
虚心柠檬完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
小月Anna完成签到,获得积分10
9秒前
Jasper应助机灵水卉采纳,获得10
10秒前
10秒前
azhar发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
崔同学发布了新的文献求助10
14秒前
15秒前
徐蹇发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
充电宝应助回火青年采纳,获得30
19秒前
ding应助索隆大人采纳,获得10
19秒前
19秒前
20秒前
21秒前
21秒前
SH发布了新的文献求助10
22秒前
大模型应助简单的夜春采纳,获得10
24秒前
24秒前
annie完成签到,获得积分10
25秒前
lsx发布了新的文献求助10
25秒前
隐形曼青应助沉默的念柏采纳,获得10
26秒前
之水发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752230
求助须知:如何正确求助?哪些是违规求助? 5473222
关于积分的说明 15373340
捐赠科研通 4891308
什么是DOI,文献DOI怎么找? 2630334
邀请新用户注册赠送积分活动 1578517
关于科研通互助平台的介绍 1534476