Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection

偏最小二乘回归 均方误差 高光谱成像 遥感 RGB颜色模型 叶绿素 近似误差 数学 环境科学 人工智能 化学 计算机科学 统计 地质学 有机化学
作者
Lianxiang Gong,Chenxi Zhu,Yifeng Luo,Xiaping Fu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:77 (2): 200-209 被引量:9
标识
DOI:10.1177/00037028221139871
摘要

Chlorophyll is one of the most important pigments in plants, and the measurement of chlorophyll levels enables real-time monitoring of plant growth, which is of great importance to the vegetation monitoring. Compared with the high cost and time-consuming operation of hyperspectral imaging technique, the spectral reflectance reconstruction technique based on RGB images has the advantages of being inexpensive and fast. In this study, using the example of ginkgo leaves, the spectra were reconstructed from red-green-blue (RGB) images taken by smartphones based on a back propagation (BP) neural network and pseudo-inverse method. Based on a BP neural network, the maximum absolute error between the reconstructed spectra and the reference spectra acquired by the hyperspectral camera was less than 0.038. A partial least squares regression (PLSR) prediction model for chlorophyll content estimation was established using the reconstructed spectra. The R2 and root mean square error (RMSE) of the validation set were 0.8237 and 1.1895%, respectively, there was a high correlation between predicted and measured values. Compared with the pseudo-inverse method, the maximum absolute error of the reconstructed spectra was reduced by 10.9%, the R2 in the chlorophyll prediction results was improved by 12.7%, and the RMSE was reduced by 19.3%. This research showed that reconstructing spectral reflectance based on RGB images can realize real-time measurement of chlorophyll content. It provided a reliable tool for fast and low-cost monitoring of plant physiology and growth conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XuanZhang完成签到,获得积分10
刚刚
刚刚
高源伯完成签到,获得积分10
1秒前
1秒前
1秒前
lizishu给yibose的求助进行了留言
2秒前
科研小子发布了新的文献求助30
2秒前
韩子云完成签到,获得积分10
2秒前
yuu完成签到 ,获得积分10
2秒前
keke完成签到,获得积分10
4秒前
4秒前
4秒前
李健应助秋qiu采纳,获得10
4秒前
趣多多发布了新的文献求助10
4秒前
大胖小子完成签到,获得积分10
5秒前
科研通AI6.1应助jiaheyuan采纳,获得10
5秒前
5秒前
ding应助来自大西洋的超采纳,获得10
6秒前
6秒前
无私的以冬完成签到,获得积分10
6秒前
谨慎鸽子完成签到 ,获得积分10
6秒前
充电宝应助yhhhhh采纳,获得10
7秒前
JamesPei应助kasumin采纳,获得10
7秒前
8秒前
归尘发布了新的文献求助10
8秒前
现代的天与完成签到 ,获得积分20
8秒前
晨昏蒙影完成签到 ,获得积分10
8秒前
科研大王关注了科研通微信公众号
9秒前
buyuan完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
周国煌发布了新的文献求助10
9秒前
高源伯发布了新的文献求助10
9秒前
superhanlei发布了新的文献求助10
9秒前
9秒前
传奇3应助沉静的樱桃采纳,获得80
10秒前
10秒前
10秒前
科研通AI6.1应助萌萌采纳,获得10
11秒前
我我我完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784