亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection

偏最小二乘回归 均方误差 高光谱成像 遥感 RGB颜色模型 叶绿素 近似误差 数学 环境科学 人工智能 化学 计算机科学 统计 地质学 有机化学
作者
Lianxiang Gong,Chenxi Zhu,Yifeng Luo,Xiaping Fu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:77 (2): 200-209 被引量:9
标识
DOI:10.1177/00037028221139871
摘要

Chlorophyll is one of the most important pigments in plants, and the measurement of chlorophyll levels enables real-time monitoring of plant growth, which is of great importance to the vegetation monitoring. Compared with the high cost and time-consuming operation of hyperspectral imaging technique, the spectral reflectance reconstruction technique based on RGB images has the advantages of being inexpensive and fast. In this study, using the example of ginkgo leaves, the spectra were reconstructed from red-green-blue (RGB) images taken by smartphones based on a back propagation (BP) neural network and pseudo-inverse method. Based on a BP neural network, the maximum absolute error between the reconstructed spectra and the reference spectra acquired by the hyperspectral camera was less than 0.038. A partial least squares regression (PLSR) prediction model for chlorophyll content estimation was established using the reconstructed spectra. The R2 and root mean square error (RMSE) of the validation set were 0.8237 and 1.1895%, respectively, there was a high correlation between predicted and measured values. Compared with the pseudo-inverse method, the maximum absolute error of the reconstructed spectra was reduced by 10.9%, the R2 in the chlorophyll prediction results was improved by 12.7%, and the RMSE was reduced by 19.3%. This research showed that reconstructing spectral reflectance based on RGB images can realize real-time measurement of chlorophyll content. It provided a reliable tool for fast and low-cost monitoring of plant physiology and growth conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Milton_z完成签到 ,获得积分0
1秒前
9秒前
10秒前
10秒前
李爱国应助春和景明采纳,获得10
12秒前
Fletcherschwann完成签到,获得积分10
18秒前
19秒前
24秒前
25秒前
28秒前
30秒前
tan发布了新的文献求助10
30秒前
32秒前
清脆元冬发布了新的文献求助10
33秒前
FashionBoy应助闫恒采纳,获得10
33秒前
明理夏波完成签到,获得积分10
35秒前
40秒前
43秒前
明理夏波发布了新的文献求助10
45秒前
49秒前
风趣雅青发布了新的文献求助30
51秒前
酷波er应助科研通管家采纳,获得30
53秒前
Criminology34应助科研通管家采纳,获得10
53秒前
Criminology34应助科研通管家采纳,获得10
54秒前
Criminology34应助科研通管家采纳,获得10
54秒前
Jasper应助香菜芋头采纳,获得10
54秒前
LuoLuo完成签到,获得积分10
58秒前
张匀继完成签到,获得积分10
59秒前
1分钟前
丘比特应助西内!卡Q因采纳,获得10
1分钟前
1分钟前
1分钟前
清脆元冬完成签到,获得积分20
1分钟前
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助Zola采纳,获得10
1分钟前
hankongli完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194849
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447015
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415157