Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection

偏最小二乘回归 均方误差 高光谱成像 遥感 RGB颜色模型 叶绿素 近似误差 数学 环境科学 人工智能 化学 计算机科学 统计 地质学 有机化学
作者
Lianxiang Gong,Chenxi Zhu,Yifeng Luo,Xiaping Fu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:77 (2): 200-209 被引量:9
标识
DOI:10.1177/00037028221139871
摘要

Chlorophyll is one of the most important pigments in plants, and the measurement of chlorophyll levels enables real-time monitoring of plant growth, which is of great importance to the vegetation monitoring. Compared with the high cost and time-consuming operation of hyperspectral imaging technique, the spectral reflectance reconstruction technique based on RGB images has the advantages of being inexpensive and fast. In this study, using the example of ginkgo leaves, the spectra were reconstructed from red-green-blue (RGB) images taken by smartphones based on a back propagation (BP) neural network and pseudo-inverse method. Based on a BP neural network, the maximum absolute error between the reconstructed spectra and the reference spectra acquired by the hyperspectral camera was less than 0.038. A partial least squares regression (PLSR) prediction model for chlorophyll content estimation was established using the reconstructed spectra. The R2 and root mean square error (RMSE) of the validation set were 0.8237 and 1.1895%, respectively, there was a high correlation between predicted and measured values. Compared with the pseudo-inverse method, the maximum absolute error of the reconstructed spectra was reduced by 10.9%, the R2 in the chlorophyll prediction results was improved by 12.7%, and the RMSE was reduced by 19.3%. This research showed that reconstructing spectral reflectance based on RGB images can realize real-time measurement of chlorophyll content. It provided a reliable tool for fast and low-cost monitoring of plant physiology and growth conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Katrina完成签到,获得积分10
刚刚
刚刚
小垃圾完成签到,获得积分10
刚刚
小斯完成签到,获得积分10
1秒前
ADcal完成签到 ,获得积分10
1秒前
1秒前
小蘑菇关注了科研通微信公众号
2秒前
儒雅梦寒完成签到,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
劲秉应助科研通管家采纳,获得20
2秒前
2秒前
jkdi完成签到,获得积分10
2秒前
fei给fei的求助进行了留言
2秒前
无奈的萝完成签到,获得积分10
2秒前
leemix完成签到 ,获得积分10
3秒前
3秒前
4秒前
叶叶完成签到,获得积分10
4秒前
鲁大师完成签到,获得积分10
4秒前
开朗向真完成签到,获得积分10
5秒前
ivy完成签到 ,获得积分10
5秒前
Jasper应助老西瓜采纳,获得10
5秒前
高挑的洋葱完成签到,获得积分10
5秒前
Su完成签到 ,获得积分10
5秒前
忐忑的方盒完成签到 ,获得积分10
6秒前
6秒前
遇见飞儿完成签到,获得积分0
7秒前
7秒前
dominate完成签到,获得积分10
8秒前
下载文章即可完成签到,获得积分10
8秒前
9秒前
fyjlfy完成签到 ,获得积分10
9秒前
9秒前
Sekiro完成签到,获得积分10
9秒前
科研通AI2S应助dh采纳,获得10
10秒前
失眠夏山完成签到,获得积分10
11秒前
jevon完成签到 ,获得积分0
11秒前
11秒前
11秒前
11秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220015
求助须知:如何正确求助?哪些是违规求助? 2868633
关于积分的说明 8161996
捐赠科研通 2535627
什么是DOI,文献DOI怎么找? 1368273
科研通“疑难数据库(出版商)”最低求助积分说明 645161
邀请新用户注册赠送积分活动 618494