亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid-Convolution Spatial–Temporal Recurrent Network For Traffic Flow Prediction

计算机科学 时间戳 杠杆(统计) 循环神经网络 数据挖掘 亲密度 卷积(计算机科学) 人工智能 计算 增采样 算法 人工神经网络 实时计算 数学 数学分析 图像(数学)
作者
Xu Zhang,Sizhao Wen,Liang Yan,Jiangfan Feng,Ying Xia
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (1): 236-252 被引量:95
标识
DOI:10.1093/comjnl/bxac171
摘要

Abstract Accurate traffic flow prediction is valuable for satisfying citizens’ travel needs and alleviating urban traffic pressure. However, it is highly challenging due to the complexity of the urban geospatial structure and the highly nonlinear temporal and spatial dependence on human mobility. Most existing works proposed to rely on strict periods (e.g. daily and weekly) and separate the extraction of temporal and spatial features. Besides, most Recurrent Neural Network (RNN)-based models either fail to capture variations of spatial–temporal features in adjacent timestamps or ignore details of closeness. In this paper, we propose a Multi-attention based Hybrid-convolution Spatial-temporal Recurrent Network (MHSRN) for region-based traffic flow prediction. In MHSRN, we leverage a hybrid-convolution module to capture both shifting features and rich information at the nearest timestamps, and we apply the downsampling procedure to reduce the computation of RNN-based model. Furthermore, we propose to adopt a space-aware multi-attention module to re-perceive global and local spatial–temporal features. We conduct extensive experiments based on three real-world datasets. The results show that the MHSRN outperforms other challenging baselines by approximately 0.2–8.1% in mean absolute error on all datasets. On datasets other than TaxiBJ, the MHSRN reduces the root mean square error by at least 2.8% compared with the RNN-based model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助20
1秒前
桐桐应助忧伤的摩托采纳,获得10
12秒前
tuanheqi应助科研通管家采纳,获得100
14秒前
117发布了新的文献求助30
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
16秒前
sj发布了新的文献求助20
18秒前
Panther完成签到,获得积分10
20秒前
20秒前
bkagyin应助调皮的绿真采纳,获得30
23秒前
JD完成签到 ,获得积分10
24秒前
Andy发布了新的文献求助10
24秒前
26秒前
26秒前
31秒前
蛋蛋发布了新的文献求助10
32秒前
sxmt123456789发布了新的文献求助10
36秒前
现代的如霜完成签到,获得积分10
37秒前
37秒前
41秒前
43秒前
44秒前
浮游应助sherry采纳,获得10
45秒前
Lusteri完成签到 ,获得积分10
45秒前
拿拿发布了新的文献求助10
48秒前
浮游应助kenshin采纳,获得10
49秒前
双青豆发布了新的文献求助30
50秒前
51秒前
57秒前
gangan发布了新的文献求助10
57秒前
wanci应助蛋蛋采纳,获得10
1分钟前
Cheung2121发布了新的文献求助30
1分钟前
1分钟前
chaoshen发布了新的文献求助10
1分钟前
浮游应助lele采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426276
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164