MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation

计算机科学 分割 增采样 人工智能 块(置换群论) 联营 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 计算机视觉 图像(数学) 几何学 数学 语言学 哲学
作者
Jianyong Li,Ge Gao,Yanhong Liu,Lei Yang
出处
期刊:Measurement [Elsevier]
卷期号:206: 112316-112316 被引量:28
标识
DOI:10.1016/j.measurement.2022.112316
摘要

Retinal fundus images contain plenty of morphological information, so it is particularly important to realize precise segmentation of the retinal vessels for clinical diagnosis. With the rapid development of deep convolutional neural networks (DCNNs), to replace earlier manual labeling methods and reduce the labor cost, DCNN-based automatic segmentation methods have been greatly developed. U-Net and its variant models have obtained superior performance, but segmentation tasks are still challenging for the following reasons: First, features from encoders and decoders are not sufficiently fused to retain more effective information. Second, the limited receptive field will also affect contextual information extraction. In addition, although the continuous pooling operations can speed up the segmentation network training efficiency, they also lose detailed information during the downsampling process. To address the above issues and precisely segment the vessel structures from fundus images, a multiscale attention-guided fusion network, called MAGF-Net, is presented for automatic retinal vessel segmentation. To capture multiscale contextual features, a multiscale attention (MSA) block is proposed to construct the backbone network. Furthermore, a feature enhancement (FE) block is also proposed and embedded in the bottleneck layer to acquire global multiscale contextual information. To take full advantage of the channel information from deep layers and the spatial information from shallow layers, an attention-guided fusion (AGF) block is designed to fuse features from different network layers. Moreover, a hybrid feature pooling (HFP) block is employed to preserve more information during the downsampling operation. To evaluate the segmentation performance of the proposed MAGF-Net, extensive segmentation experiments are conducted on three public datasets: the CHASE_DB1 set, the DRIVE set and the STARE set. The experimental results show that the proposed MAGF-Net can obtain remarkable segmentation performance compared with other advanced methods. In particular, the ability of the proposed MAGF-Net to segment thin blood vessels is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xss完成签到,获得积分20
刚刚
刚刚
1秒前
苹果易真发布了新的文献求助10
1秒前
田様应助感动语蝶采纳,获得30
2秒前
LI发布了新的文献求助10
3秒前
NexusExplorer应助驰驰采纳,获得10
4秒前
5秒前
6秒前
王铁柱完成签到,获得积分10
6秒前
6秒前
7秒前
糟糕的傲云完成签到,获得积分10
9秒前
9秒前
Orange应助LI采纳,获得10
10秒前
10秒前
万能图书馆应助专注白安采纳,获得10
10秒前
慕青应助陌君子筱采纳,获得10
12秒前
12秒前
曙丽盼发布了新的文献求助10
12秒前
嘻嘻子发布了新的文献求助10
12秒前
fangfang完成签到,获得积分10
13秒前
小吴完成签到,获得积分10
13秒前
13秒前
生信好难完成签到,获得积分10
14秒前
15秒前
呢喃完成签到,获得积分10
15秒前
15秒前
16秒前
棕榈完成签到,获得积分10
16秒前
17秒前
17秒前
曾经问玉完成签到,获得积分10
19秒前
驰驰发布了新的文献求助10
19秒前
19秒前
梦XING完成签到 ,获得积分10
20秒前
小耿完成签到 ,获得积分10
21秒前
21秒前
Owen应助轻松的海豚采纳,获得10
21秒前
小常不馋发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721