清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation

计算机科学 分割 增采样 人工智能 块(置换群论) 联营 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 计算机视觉 图像(数学) 几何学 数学 语言学 哲学
作者
Jianyong Li,Ge Gao,Yanhong Liu,Lei Yang
出处
期刊:Measurement [Elsevier]
卷期号:206: 112316-112316 被引量:53
标识
DOI:10.1016/j.measurement.2022.112316
摘要

Retinal fundus images contain plenty of morphological information, so it is particularly important to realize precise segmentation of the retinal vessels for clinical diagnosis. With the rapid development of deep convolutional neural networks (DCNNs), to replace earlier manual labeling methods and reduce the labor cost, DCNN-based automatic segmentation methods have been greatly developed. U-Net and its variant models have obtained superior performance, but segmentation tasks are still challenging for the following reasons: First, features from encoders and decoders are not sufficiently fused to retain more effective information. Second, the limited receptive field will also affect contextual information extraction. In addition, although the continuous pooling operations can speed up the segmentation network training efficiency, they also lose detailed information during the downsampling process. To address the above issues and precisely segment the vessel structures from fundus images, a multiscale attention-guided fusion network, called MAGF-Net, is presented for automatic retinal vessel segmentation. To capture multiscale contextual features, a multiscale attention (MSA) block is proposed to construct the backbone network. Furthermore, a feature enhancement (FE) block is also proposed and embedded in the bottleneck layer to acquire global multiscale contextual information. To take full advantage of the channel information from deep layers and the spatial information from shallow layers, an attention-guided fusion (AGF) block is designed to fuse features from different network layers. Moreover, a hybrid feature pooling (HFP) block is employed to preserve more information during the downsampling operation. To evaluate the segmentation performance of the proposed MAGF-Net, extensive segmentation experiments are conducted on three public datasets: the CHASE_DB1 set, the DRIVE set and the STARE set. The experimental results show that the proposed MAGF-Net can obtain remarkable segmentation performance compared with other advanced methods. In particular, the ability of the proposed MAGF-Net to segment thin blood vessels is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助白日睡觉采纳,获得10
13秒前
披着羊皮的狼完成签到 ,获得积分10
38秒前
大饼完成签到 ,获得积分10
39秒前
53秒前
大喜喜发布了新的文献求助40
1分钟前
1分钟前
1分钟前
大喜喜发布了新的文献求助10
1分钟前
chifer完成签到 ,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
2分钟前
种下梧桐树完成签到 ,获得积分10
2分钟前
种下梧桐树完成签到 ,获得积分10
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
3分钟前
百里守约完成签到 ,获得积分10
3分钟前
萝卜猪完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
小鱼应助科研通管家采纳,获得50
5分钟前
完美世界应助AA采纳,获得10
6分钟前
年轻千愁完成签到 ,获得积分10
6分钟前
练得身形似鹤形完成签到 ,获得积分10
6分钟前
7分钟前
AA发布了新的文献求助10
7分钟前
7分钟前
马铃薯完成签到,获得积分10
7分钟前
FashionBoy应助AA采纳,获得10
8分钟前
yf完成签到 ,获得积分10
8分钟前
zxq完成签到 ,获得积分10
8分钟前
drhwang完成签到,获得积分10
9分钟前
特特雷珀萨努完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
Chonger发布了新的文献求助10
9分钟前
film完成签到 ,获得积分10
9分钟前
AA发布了新的文献求助10
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4614011
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531