清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation

计算机科学 分割 增采样 人工智能 块(置换群论) 联营 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 计算机视觉 图像(数学) 几何学 数学 语言学 哲学
作者
Jianyong Li,Ge Gao,Yanhong Liu,Lei Yang
出处
期刊:Measurement [Elsevier BV]
卷期号:206: 112316-112316 被引量:37
标识
DOI:10.1016/j.measurement.2022.112316
摘要

Retinal fundus images contain plenty of morphological information, so it is particularly important to realize precise segmentation of the retinal vessels for clinical diagnosis. With the rapid development of deep convolutional neural networks (DCNNs), to replace earlier manual labeling methods and reduce the labor cost, DCNN-based automatic segmentation methods have been greatly developed. U-Net and its variant models have obtained superior performance, but segmentation tasks are still challenging for the following reasons: First, features from encoders and decoders are not sufficiently fused to retain more effective information. Second, the limited receptive field will also affect contextual information extraction. In addition, although the continuous pooling operations can speed up the segmentation network training efficiency, they also lose detailed information during the downsampling process. To address the above issues and precisely segment the vessel structures from fundus images, a multiscale attention-guided fusion network, called MAGF-Net, is presented for automatic retinal vessel segmentation. To capture multiscale contextual features, a multiscale attention (MSA) block is proposed to construct the backbone network. Furthermore, a feature enhancement (FE) block is also proposed and embedded in the bottleneck layer to acquire global multiscale contextual information. To take full advantage of the channel information from deep layers and the spatial information from shallow layers, an attention-guided fusion (AGF) block is designed to fuse features from different network layers. Moreover, a hybrid feature pooling (HFP) block is employed to preserve more information during the downsampling operation. To evaluate the segmentation performance of the proposed MAGF-Net, extensive segmentation experiments are conducted on three public datasets: the CHASE_DB1 set, the DRIVE set and the STARE set. The experimental results show that the proposed MAGF-Net can obtain remarkable segmentation performance compared with other advanced methods. In particular, the ability of the proposed MAGF-Net to segment thin blood vessels is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm完成签到,获得积分10
7秒前
kuyi完成签到 ,获得积分10
34秒前
Guo完成签到 ,获得积分10
38秒前
mengli完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
叶YE发布了新的文献求助30
2分钟前
科目三应助叶YE采纳,获得10
3分钟前
重要铃铛完成签到 ,获得积分10
3分钟前
叶YE完成签到,获得积分10
3分钟前
Arthur完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
xiaxiao应助科研通管家采纳,获得100
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
xiaxiao应助科研通管家采纳,获得50
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
mp5完成签到,获得积分10
5分钟前
王多肉完成签到,获得积分10
5分钟前
青山完成签到 ,获得积分10
5分钟前
FL完成签到,获得积分10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
cherry_mm应助科研通管家采纳,获得80
5分钟前
xiaxiao应助科研通管家采纳,获得80
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671300
求助须知:如何正确求助?哪些是违规求助? 3228149
关于积分的说明 9778643
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003