清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation

计算机科学 分割 增采样 人工智能 块(置换群论) 联营 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 计算机视觉 图像(数学) 几何学 数学 语言学 哲学
作者
Jianyong Li,Ge Gao,Yanhong Liu,Lei Yang
出处
期刊:Measurement [Elsevier BV]
卷期号:206: 112316-112316 被引量:37
标识
DOI:10.1016/j.measurement.2022.112316
摘要

Retinal fundus images contain plenty of morphological information, so it is particularly important to realize precise segmentation of the retinal vessels for clinical diagnosis. With the rapid development of deep convolutional neural networks (DCNNs), to replace earlier manual labeling methods and reduce the labor cost, DCNN-based automatic segmentation methods have been greatly developed. U-Net and its variant models have obtained superior performance, but segmentation tasks are still challenging for the following reasons: First, features from encoders and decoders are not sufficiently fused to retain more effective information. Second, the limited receptive field will also affect contextual information extraction. In addition, although the continuous pooling operations can speed up the segmentation network training efficiency, they also lose detailed information during the downsampling process. To address the above issues and precisely segment the vessel structures from fundus images, a multiscale attention-guided fusion network, called MAGF-Net, is presented for automatic retinal vessel segmentation. To capture multiscale contextual features, a multiscale attention (MSA) block is proposed to construct the backbone network. Furthermore, a feature enhancement (FE) block is also proposed and embedded in the bottleneck layer to acquire global multiscale contextual information. To take full advantage of the channel information from deep layers and the spatial information from shallow layers, an attention-guided fusion (AGF) block is designed to fuse features from different network layers. Moreover, a hybrid feature pooling (HFP) block is employed to preserve more information during the downsampling operation. To evaluate the segmentation performance of the proposed MAGF-Net, extensive segmentation experiments are conducted on three public datasets: the CHASE_DB1 set, the DRIVE set and the STARE set. The experimental results show that the proposed MAGF-Net can obtain remarkable segmentation performance compared with other advanced methods. In particular, the ability of the proposed MAGF-Net to segment thin blood vessels is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiujieweizi完成签到 ,获得积分10
1秒前
ii完成签到 ,获得积分10
1秒前
Rondab应助Jason-1024采纳,获得10
5秒前
aowulan完成签到 ,获得积分10
6秒前
阿狸完成签到 ,获得积分0
7秒前
科目三应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
11秒前
14秒前
七人七发布了新的文献求助10
16秒前
小王发布了新的文献求助20
19秒前
共享精神应助王月缶采纳,获得30
20秒前
ChatGPT完成签到,获得积分10
21秒前
我和你完成签到 ,获得积分10
24秒前
万能图书馆应助小王采纳,获得10
26秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
王月缶完成签到,获得积分10
29秒前
31秒前
王月缶发布了新的文献求助30
32秒前
不知道完成签到,获得积分10
34秒前
闪闪的谷梦完成签到 ,获得积分10
46秒前
51秒前
jjjjjj发布了新的文献求助10
52秒前
jcomeon123完成签到,获得积分10
56秒前
ggg完成签到 ,获得积分10
1分钟前
东郭凝蝶完成签到 ,获得积分10
1分钟前
lida发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
gwbk完成签到,获得积分10
1分钟前
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
小王发布了新的文献求助10
1分钟前
辣辣辣辣辣辣完成签到 ,获得积分10
1分钟前
mojito完成签到 ,获得积分10
1分钟前
JJ完成签到 ,获得积分10
1分钟前
yeurekar发布了新的文献求助10
1分钟前
Ava应助小王采纳,获得10
2分钟前
谭玲慧完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008607
求助须知:如何正确求助?哪些是违规求助? 3548284
关于积分的说明 11298733
捐赠科研通 3282975
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218