清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation

计算机科学 分割 增采样 人工智能 块(置换群论) 联营 卷积神经网络 模式识别(心理学) 特征(语言学) 深度学习 计算机视觉 图像(数学) 几何学 数学 语言学 哲学
作者
Jianyong Li,Ge Gao,Yanhong Liu,Lei Yang
出处
期刊:Measurement [Elsevier]
卷期号:206: 112316-112316 被引量:53
标识
DOI:10.1016/j.measurement.2022.112316
摘要

Retinal fundus images contain plenty of morphological information, so it is particularly important to realize precise segmentation of the retinal vessels for clinical diagnosis. With the rapid development of deep convolutional neural networks (DCNNs), to replace earlier manual labeling methods and reduce the labor cost, DCNN-based automatic segmentation methods have been greatly developed. U-Net and its variant models have obtained superior performance, but segmentation tasks are still challenging for the following reasons: First, features from encoders and decoders are not sufficiently fused to retain more effective information. Second, the limited receptive field will also affect contextual information extraction. In addition, although the continuous pooling operations can speed up the segmentation network training efficiency, they also lose detailed information during the downsampling process. To address the above issues and precisely segment the vessel structures from fundus images, a multiscale attention-guided fusion network, called MAGF-Net, is presented for automatic retinal vessel segmentation. To capture multiscale contextual features, a multiscale attention (MSA) block is proposed to construct the backbone network. Furthermore, a feature enhancement (FE) block is also proposed and embedded in the bottleneck layer to acquire global multiscale contextual information. To take full advantage of the channel information from deep layers and the spatial information from shallow layers, an attention-guided fusion (AGF) block is designed to fuse features from different network layers. Moreover, a hybrid feature pooling (HFP) block is employed to preserve more information during the downsampling operation. To evaluate the segmentation performance of the proposed MAGF-Net, extensive segmentation experiments are conducted on three public datasets: the CHASE_DB1 set, the DRIVE set and the STARE set. The experimental results show that the proposed MAGF-Net can obtain remarkable segmentation performance compared with other advanced methods. In particular, the ability of the proposed MAGF-Net to segment thin blood vessels is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tingting完成签到,获得积分10
4秒前
喜喜完成签到,获得积分10
5秒前
美满惜寒完成签到,获得积分10
5秒前
洋芋饭饭完成签到,获得积分10
5秒前
yzz完成签到,获得积分10
5秒前
阳光完成签到,获得积分10
5秒前
朝夕之晖完成签到,获得积分10
5秒前
BMG完成签到,获得积分10
6秒前
runtang完成签到,获得积分10
6秒前
qq完成签到,获得积分10
6秒前
BowieHuang完成签到,获得积分0
6秒前
真的OK完成签到,获得积分0
6秒前
prrrratt完成签到,获得积分10
7秒前
CGBIO完成签到,获得积分10
7秒前
ys1008完成签到,获得积分10
7秒前
guoyufan完成签到,获得积分10
7秒前
Syan完成签到,获得积分10
8秒前
王jyk完成签到,获得积分10
8秒前
呵呵哒完成签到,获得积分10
8秒前
啪嗒大白球完成签到,获得积分10
8秒前
dx完成签到,获得积分10
9秒前
清水完成签到,获得积分10
9秒前
zwzw完成签到,获得积分10
9秒前
675完成签到,获得积分10
9秒前
大树完成签到,获得积分10
9秒前
cityhunter7777完成签到,获得积分10
10秒前
凌泉完成签到 ,获得积分10
10秒前
12秒前
哈哈哈大赞完成签到,获得积分10
13秒前
debu9完成签到,获得积分10
14秒前
16秒前
17秒前
racill完成签到 ,获得积分10
19秒前
无极微光应助科研通管家采纳,获得30
20秒前
科研通AI6应助闪闪的硬币采纳,获得10
31秒前
crazy完成签到,获得积分10
35秒前
红茸茸羊完成签到 ,获得积分0
37秒前
梦游菌完成签到 ,获得积分10
42秒前
南风完成签到 ,获得积分10
49秒前
冰河完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658317
求助须知:如何正确求助?哪些是违规求助? 4820097
关于积分的说明 15081256
捐赠科研通 4816827
什么是DOI,文献DOI怎么找? 2577721
邀请新用户注册赠送积分活动 1532572
关于科研通互助平台的介绍 1491262