Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NEM嬛嬛驾到完成签到,获得积分10
刚刚
1秒前
深秋发布了新的文献求助10
1秒前
1秒前
大婷子发布了新的文献求助10
1秒前
1秒前
风清扬发布了新的文献求助10
1秒前
1秒前
柴彤淑完成签到 ,获得积分10
2秒前
3秒前
3秒前
可爱的函函应助harmon采纳,获得10
3秒前
别绪叁仟发布了新的文献求助10
3秒前
张lulu发布了新的文献求助10
3秒前
科研喵发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助陈功城采纳,获得10
5秒前
沉默的罡完成签到,获得积分20
5秒前
无极微光应助yc采纳,获得20
5秒前
温柔发卡发布了新的文献求助10
5秒前
liviawong完成签到,获得积分10
6秒前
JQing发布了新的文献求助10
6秒前
7秒前
科研通AI6应助霸霸采纳,获得10
7秒前
fangyuan发布了新的文献求助10
7秒前
充电宝应助努力的欢欢采纳,获得10
7秒前
哒哒李完成签到,获得积分10
7秒前
7秒前
8秒前
大气的杨发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
ori12138完成签到,获得积分10
9秒前
tt发布了新的文献求助20
9秒前
谨慎的雍发布了新的文献求助10
9秒前
9秒前
dew应助兵哥采纳,获得10
9秒前
mini发布了新的文献求助10
11秒前
asdfqwer应助和和和采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485