Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助秋风知我意采纳,获得10
1秒前
2秒前
ZMJ完成签到,获得积分10
5秒前
Orange应助SJ7采纳,获得10
7秒前
酷酷的如波完成签到 ,获得积分10
9秒前
椰子发布了新的文献求助10
10秒前
我是老大应助只是听说采纳,获得10
11秒前
天亮polar完成签到,获得积分10
12秒前
14秒前
默默水蓝发布了新的文献求助10
14秒前
15秒前
虾虾发布了新的文献求助10
16秒前
17秒前
Lliu完成签到,获得积分10
17秒前
18秒前
TT001发布了新的文献求助30
21秒前
曼曼完成签到,获得积分10
23秒前
落寞代亦发布了新的文献求助10
23秒前
岳阳张震岳完成签到,获得积分10
23秒前
Linda发布了新的文献求助10
23秒前
24秒前
24秒前
26秒前
科研通AI2S应助曼曼采纳,获得30
26秒前
27秒前
阿良完成签到 ,获得积分10
27秒前
渊渟岳峙完成签到,获得积分10
28秒前
阿茗完成签到,获得积分10
29秒前
清秀的大山完成签到,获得积分10
30秒前
111111发布了新的文献求助10
31秒前
WANDour完成签到,获得积分10
33秒前
三石发布了新的文献求助10
33秒前
渊渟岳峙发布了新的文献求助10
35秒前
35秒前
35秒前
李爱国应助初末采纳,获得10
37秒前
Zhang完成签到,获得积分10
39秒前
孟一完成签到,获得积分10
41秒前
luoman5656完成签到,获得积分10
41秒前
机灵又蓝完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331