Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Focus完成签到,获得积分20
刚刚
孟严青完成签到,获得积分0
1秒前
量子星尘发布了新的文献求助10
1秒前
合适台灯发布了新的文献求助30
1秒前
2秒前
杨幂发布了新的文献求助10
2秒前
XT666完成签到,获得积分10
2秒前
学术混子完成签到,获得积分10
2秒前
AA完成签到,获得积分10
2秒前
灵巧代柔完成签到,获得积分10
3秒前
糖豆豆吃豆豆完成签到,获得积分10
3秒前
无辜竺完成签到 ,获得积分10
4秒前
5秒前
xiongyuan完成签到,获得积分10
5秒前
司徒不正发布了新的文献求助30
6秒前
追寻的访烟完成签到,获得积分10
6秒前
xiuwen发布了新的文献求助10
7秒前
7秒前
学术混子发布了新的文献求助10
7秒前
无聊的老姆完成签到 ,获得积分10
8秒前
岁月如酒发布了新的文献求助10
8秒前
噜噜噜噜噜完成签到,获得积分10
8秒前
yookia应助一人一般采纳,获得10
8秒前
Hello应助张远幸采纳,获得10
9秒前
FireNow完成签到,获得积分10
9秒前
Muhammad发布了新的文献求助10
10秒前
restudy68完成签到,获得积分10
10秒前
情怀应助美满的天薇采纳,获得10
10秒前
我还不困完成签到,获得积分10
11秒前
12秒前
熠熠完成签到,获得积分10
12秒前
小王完成签到,获得积分10
12秒前
12秒前
xiuwen完成签到,获得积分10
13秒前
Jasper应助合适台灯采纳,获得10
13秒前
岁月如酒完成签到,获得积分10
14秒前
LLL完成签到,获得积分10
14秒前
14秒前
温柔的蛋挞完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479