Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
木杉完成签到,获得积分10
3秒前
赘婿应助吕佳蔚采纳,获得10
4秒前
在水一方应助整齐醉冬采纳,获得10
4秒前
5秒前
6秒前
上官若男应助wangkai030709采纳,获得10
7秒前
7秒前
8秒前
9秒前
liu完成签到,获得积分10
10秒前
英俊雪曼发布了新的文献求助80
10秒前
11秒前
今后应助UnprofessionalX采纳,获得10
11秒前
沈小小发布了新的文献求助10
12秒前
13秒前
liu发布了新的文献求助30
13秒前
wanci应助Ethan采纳,获得10
14秒前
14秒前
高风亮节完成签到,获得积分10
15秒前
冰雪发布了新的文献求助10
15秒前
liu1223456完成签到,获得积分10
17秒前
浮世清欢发布了新的文献求助10
17秒前
youda完成签到 ,获得积分10
18秒前
19秒前
21秒前
21秒前
跳跳骑士发布了新的文献求助10
25秒前
27秒前
Ethan发布了新的文献求助10
27秒前
整齐醉冬发布了新的文献求助10
31秒前
查查完成签到 ,获得积分10
32秒前
玖念完成签到,获得积分10
33秒前
ding应助曹年跃采纳,获得10
34秒前
可爱的函函应助100采纳,获得10
36秒前
浮世清欢完成签到,获得积分20
36秒前
zzh0409km发布了新的文献求助10
37秒前
39秒前
39秒前
学学学完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559994
求助须知:如何正确求助?哪些是违规求助? 4645112
关于积分的说明 14674328
捐赠科研通 4586220
什么是DOI,文献DOI怎么找? 2516312
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841