Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助DAYAN采纳,获得10
刚刚
qq发布了新的文献求助10
刚刚
qqqqq发布了新的文献求助10
刚刚
浮游应助Henvy采纳,获得10
1秒前
zhonglv7应助柏小霜采纳,获得10
2秒前
天天快乐应助储明明采纳,获得10
3秒前
领导范儿应助奶油采纳,获得10
5秒前
科研通AI6应助情红锐采纳,获得10
5秒前
6秒前
李健的小迷弟应助Ahan采纳,获得10
7秒前
qqqqq完成签到,获得积分10
8秒前
lss完成签到,获得积分10
8秒前
葡萄发布了新的文献求助50
9秒前
Zw完成签到,获得积分10
9秒前
11秒前
ybigwhite应助柏小霜采纳,获得10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
yoyo20012623发布了新的文献求助10
16秒前
17秒前
17秒前
完美世界应助蛋蛋采纳,获得10
17秒前
17秒前
葡萄完成签到,获得积分10
18秒前
18秒前
18秒前
鱼跃发布了新的文献求助10
19秒前
xcx关闭了xcx文献求助
20秒前
licheng发布了新的文献求助100
20秒前
cpl关注了科研通微信公众号
21秒前
顾矜应助烤鱼的夹克采纳,获得10
21秒前
鄢亮发布了新的文献求助10
22秒前
23秒前
ChenJiahao完成签到,获得积分10
23秒前
23秒前
24秒前
独特麦片发布了新的文献求助10
24秒前
pj发布了新的文献求助10
24秒前
24秒前
gu完成签到 ,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135125
求助须知:如何正确求助?哪些是违规求助? 4335681
关于积分的说明 13507506
捐赠科研通 4173285
什么是DOI,文献DOI怎么找? 2288314
邀请新用户注册赠送积分活动 1289041
关于科研通互助平台的介绍 1230093