Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John发布了新的文献求助10
刚刚
科研通AI6应助陈晨采纳,获得10
刚刚
DU完成签到,获得积分10
1秒前
任寒松发布了新的文献求助10
1秒前
bkagyin应助我爱帆帆采纳,获得10
2秒前
汉堡包应助OoO采纳,获得10
2秒前
3秒前
刘奇发布了新的文献求助10
5秒前
沉静晓丝完成签到,获得积分10
6秒前
szy完成签到,获得积分10
8秒前
起司猫发布了新的文献求助10
8秒前
思源应助勤奋的梦桃采纳,获得10
9秒前
CipherSage应助lily采纳,获得10
10秒前
丽优完成签到,获得积分10
10秒前
Doki完成签到 ,获得积分20
11秒前
香蕉觅云应助mmyhn采纳,获得10
11秒前
大个应助钰钰yuyu采纳,获得10
12秒前
时长两年半完成签到,获得积分10
12秒前
15秒前
痴情的思烟完成签到 ,获得积分10
15秒前
16秒前
胖莹完成签到 ,获得积分10
16秒前
ABC完成签到,获得积分10
18秒前
18秒前
袁晨阳完成签到 ,获得积分10
18秒前
yyds给张景赛的求助进行了留言
18秒前
w1完成签到,获得积分10
19秒前
19秒前
浮游应助XI采纳,获得10
20秒前
20秒前
LYYYY完成签到,获得积分10
20秒前
21秒前
痴情的思烟关注了科研通微信公众号
21秒前
十七。完成签到,获得积分10
22秒前
一口啵啵发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
无辜问玉完成签到,获得积分10
24秒前
ABC发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949