Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DrSong发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
奕_yinb完成签到 ,获得积分10
3秒前
星辰大海应助白开水采纳,获得10
3秒前
3秒前
麦麦完成签到,获得积分20
3秒前
123456qi发布了新的文献求助10
3秒前
4秒前
4秒前
小新应助烟波钓徒采纳,获得10
4秒前
4秒前
负责吃饭完成签到,获得积分10
4秒前
微渺完成签到,获得积分10
4秒前
睿力完成签到,获得积分10
4秒前
妮妮完成签到,获得积分10
5秒前
2224536完成签到,获得积分10
5秒前
天天快乐应助vivre223采纳,获得10
5秒前
shuiha发布了新的文献求助10
5秒前
5秒前
一一应助零度冰采纳,获得10
6秒前
鱼鱼鱼完成签到,获得积分10
6秒前
6秒前
6秒前
梅竹发布了新的文献求助10
7秒前
万能图书馆应助yiyi采纳,获得10
7秒前
lili完成签到,获得积分10
7秒前
8秒前
侏罗纪世界完成签到,获得积分10
8秒前
infe发布了新的文献求助10
8秒前
奕_yinb关注了科研通微信公众号
9秒前
LGS发布了新的文献求助10
9秒前
rrrrrrrrrrrrrrr完成签到,获得积分20
10秒前
smin发布了新的文献求助10
10秒前
10秒前
无花果应助往不随采纳,获得10
10秒前
11秒前
优雅含灵发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853