Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
1111发布了新的文献求助10
3秒前
shuxi完成签到,获得积分10
3秒前
幽幽发布了新的文献求助30
5秒前
wayched完成签到,获得积分10
5秒前
韩1234发布了新的文献求助10
6秒前
wanci应助杨怂怂采纳,获得10
6秒前
6秒前
善学以致用应助碧蓝雁风采纳,获得10
7秒前
Playerone发布了新的文献求助30
7秒前
Mr.Reese完成签到,获得积分10
8秒前
Arielyw完成签到,获得积分10
8秒前
8秒前
9秒前
活力的泥猴桃完成签到 ,获得积分10
9秒前
彭彭完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
weerfi发布了新的文献求助30
10秒前
丹青完成签到 ,获得积分10
11秒前
12秒前
郭宏亮发布了新的文献求助10
12秒前
13秒前
luxi0714发布了新的文献求助10
13秒前
万能图书馆应助虎啊虎啊采纳,获得10
15秒前
浮游应助yyyyyyyyy采纳,获得10
15秒前
sullyeon发布了新的文献求助20
15秒前
天天快乐应助暖暖采纳,获得10
15秒前
15秒前
16秒前
庄文昌发布了新的文献求助10
16秒前
17秒前
ns发布了新的文献求助30
17秒前
机灵道罡完成签到,获得积分10
18秒前
风雅颂完成签到,获得积分10
18秒前
黄黄完成签到 ,获得积分10
18秒前
Pursue。发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556846
求助须知:如何正确求助?哪些是违规求助? 3984680
关于积分的说明 12336745
捐赠科研通 3654730
什么是DOI,文献DOI怎么找? 2013293
邀请新用户注册赠送积分活动 1048292
科研通“疑难数据库(出版商)”最低求助积分说明 936733