Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXY发布了新的文献求助10
1秒前
希望天下0贩的0应助mvpzxx采纳,获得30
1秒前
露桥闻笛发布了新的文献求助10
3秒前
4秒前
科研通AI6应助柚子采纳,获得10
4秒前
hhh123发布了新的文献求助10
4秒前
周杰伦完成签到,获得积分10
4秒前
说不得大师完成签到,获得积分10
6秒前
6秒前
夏秀鑫关注了科研通微信公众号
6秒前
SciGPT应助ajjdnd采纳,获得10
6秒前
7秒前
夏硕士发布了新的文献求助10
8秒前
威武的雁易完成签到,获得积分10
8秒前
Eric发布了新的文献求助10
8秒前
CCC完成签到 ,获得积分10
8秒前
CodeCraft应助悦欣月采纳,获得10
11秒前
科研小白发布了新的文献求助10
12秒前
12秒前
高兴摇伽发布了新的文献求助10
13秒前
hyl-tcm完成签到 ,获得积分10
14秒前
15秒前
15秒前
搜集达人应助露桥闻笛采纳,获得30
16秒前
完美世界应助何必在乎采纳,获得10
16秒前
16秒前
科研通AI6应助SilverPlane采纳,获得10
17秒前
17秒前
Eric完成签到,获得积分10
20秒前
威武从霜发布了新的文献求助10
20秒前
mvpzxx发布了新的文献求助30
21秒前
知了完成签到 ,获得积分10
21秒前
77发布了新的文献求助10
22秒前
冯藏花完成签到,获得积分10
22秒前
小白完成签到 ,获得积分10
23秒前
陈曦读研版完成签到 ,获得积分10
23秒前
24秒前
paws发布了新的文献求助10
24秒前
Akim应助无限绮南采纳,获得10
27秒前
红毛兔完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995