Cross-City Multi-Granular Adaptive Transfer Learning for Traffic Flow Prediction

学习迁移 计算机科学 初始化 流量(计算机网络) 人工智能 机器学习 深度学习 传输(计算) 数据挖掘 计算机安全 并行计算 程序设计语言
作者
Jiqian Mo,Zhiguo Gong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (11): 11246-11258 被引量:8
标识
DOI:10.1109/tkde.2022.3232185
摘要

Accurate traffic prediction is one of the most important techniques in building a smart city. Many works, especially deep learning models, have made great progress in traffic prediction based on rich historical data. However, many cities still suffer from the problem of data scarcity in many aspects. Some works use transfer learning to solve this kind of problem, but what and how to transfer is still an important problem. In this article, we propose a novel Cross-city Multi-Granular Adaptive Transfer Learning method named MGAT for traffic prediction with only a few data in the target city. We first use the meta-learning algorithm to train the model on multiple source cities to get a good initialization. And at the same time, the multi-granular regional characteristics of each source city will be obtained based on our model structure. Then we design an Adaptive Transfer module mainly composed of Spatial-Attention and Multi-head Attention mechanism to automatically select the most appropriate features from the multi-granular features trained from multiple source cities, to achieve the best transfer effect. We conduct extensive experiments on two kinds of real-world traffic datasets cross several cities. Experimental results with other state-of-the-art models demonstrate the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nino发布了新的文献求助10
刚刚
golds发布了新的文献求助10
刚刚
热心雨南完成签到,获得积分10
刚刚
2秒前
bean关注了科研通微信公众号
2秒前
领导范儿应助琳琳采纳,获得20
2秒前
君君完成签到,获得积分10
3秒前
3秒前
情怀应助ml采纳,获得10
3秒前
菜鸟队长完成签到,获得积分10
4秒前
火星上映易完成签到 ,获得积分10
4秒前
4秒前
木木杉完成签到 ,获得积分10
4秒前
英吉利25发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Jasper应助yunchaozhang采纳,获得10
7秒前
发100篇SCI发布了新的文献求助10
8秒前
聪明日记本完成签到,获得积分10
8秒前
8秒前
风汐5423发布了新的文献求助10
8秒前
8秒前
zhaoyuwei发布了新的文献求助10
9秒前
qinghe发布了新的文献求助10
9秒前
10秒前
11秒前
binana完成签到 ,获得积分10
11秒前
CC完成签到 ,获得积分10
11秒前
11秒前
12秒前
田様应助陈pc采纳,获得10
12秒前
友好的咖啡豆完成签到,获得积分10
12秒前
13秒前
wyuk发布了新的文献求助10
13秒前
bkagyin应助里lilili采纳,获得10
13秒前
开心凌柏完成签到,获得积分10
15秒前
15秒前
YT发布了新的文献求助10
15秒前
隐形萃发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251653
求助须知:如何正确求助?哪些是违规求助? 4415731
关于积分的说明 13747051
捐赠科研通 4287495
什么是DOI,文献DOI怎么找? 2352481
邀请新用户注册赠送积分活动 1349315
关于科研通互助平台的介绍 1308791