已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Urban Traffic Signal Control with Reinforcement Learning from Demonstration Data

强化学习 计算机科学 初始化 人工智能 机器学习 信号(编程语言) 步伐 控制(管理) 趋同(经济学) 大地测量学 经济增长 经济 程序设计语言 地理
作者
Min Wang,Libing Wu,Jianxin Li,Dan Wu,Chao Ma
标识
DOI:10.1109/ijcnn55064.2022.9892538
摘要

Reinforcement learning has been applied to various decision-making tasks and has achieved high profile successes. More and more studies have proposed to use reinforcement learning (RL) for traffic signal control to improve transportation efficiency. However, these methods suffer from a major exploration problem, and their performance is particularly poor. And even fail to quickly converge during the initial stage when interacting with the environment. To overcome this problem, we propose an RL model for traffic signal control based on demonstration data, which provides prior expert knowledge before RL model training. The demonstrations are collected from the classic method self-organizing traffic light (SOTL). It not only serves as expert knowledge but also explores and improves the entire decision-making system. Specifically, we use small demonstration data sets to pre-train the Ape-X Deep Q-learning Network (DQ N) for traffic signal control. When training a RL model from scratch, we often need a lot of data and time to learn a better initialization. Our approach is dedicated to making the RL algorithm converge quickly and accelerating the pace of learning. Extensive experiments on three urban datasets confirm that our method performs better with faster convergence and least travel time than the current RL-based methods by an average of 23.9%, 23.8%, 11.6%
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张aa完成签到 ,获得积分20
3秒前
光亮雁玉发布了新的文献求助10
3秒前
4秒前
标致夜蕾发布了新的文献求助10
5秒前
Fan完成签到,获得积分10
7秒前
jokerhoney完成签到,获得积分10
7秒前
Zoe完成签到 ,获得积分10
9秒前
11秒前
12秒前
javaxixi完成签到 ,获得积分10
13秒前
秋林完成签到,获得积分10
16秒前
zcm发布了新的文献求助10
17秒前
17秒前
19秒前
21秒前
orixero应助YYYZZX1采纳,获得10
23秒前
24秒前
闪耀的芝士蛋挞完成签到,获得积分10
25秒前
Iris完成签到 ,获得积分10
26秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
yunsww完成签到,获得积分10
31秒前
张翰林发布了新的文献求助10
34秒前
Hello应助扳手已就位采纳,获得10
36秒前
可爱的函函应助栗子鱼采纳,获得10
37秒前
yangxi发布了新的文献求助10
37秒前
彼岸花开发布了新的文献求助10
40秒前
42秒前
xiaotudou95完成签到,获得积分10
42秒前
奔波霸完成签到 ,获得积分10
42秒前
甜蜜发带完成签到 ,获得积分0
43秒前
Lensin完成签到 ,获得积分10
44秒前
xiaotudou95发布了新的文献求助10
47秒前
知足的憨人丫丫完成签到,获得积分10
48秒前
ll完成签到 ,获得积分10
50秒前
夔kk完成签到 ,获得积分10
52秒前
fanboyz完成签到 ,获得积分10
55秒前
烟花应助yangxi采纳,获得10
55秒前
华仔应助蚂蚁Y嘿采纳,获得10
1分钟前
光亮雁玉发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959971
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128425
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042