三元运算
过电位
异质结
光催化
带隙
电子转移
氧化还原
材料科学
载流子
化学工程
电化学
纳米技术
化学
光电子学
电极
工程类
光化学
物理化学
冶金
催化作用
计算机科学
生物化学
程序设计语言
作者
Zhuonan Lei,Xiaofei Cao,Jun Fan,Xiao Hu,Jun Hu,Neng Li,Tao Sun,Enzhou Liu
标识
DOI:10.1016/j.cej.2022.141249
摘要
Herein, In2.77S4/NiS2 heterojunction was firstly synthesized through an in-situ solvothermal method, then it was introduced to the surface of g-C3N4 to construct a ternary In2.77S4/NiS2/g-C3N4 S-scheme heterojunction via a simple physical solvent evaporation process. The investigation shows that the ternary In2.77S4/NiS2/g-C3N4 heterojunction exhibits an excellent light harvesting ability from 200 nm to 800 nm for the metallic-like NiS2 and the narrower bandgap of In2.77S4, it also has a better charge carrier separation and migration property compared to single and binary components. According to the photocatalytic tests, the photocatalytic H2 production rate over 20 wt% In2.77S4/NiS2/g-C3N4 can attain 7481.7 μmol·g−1·h−1, 52.5, 33.8 and 28.5 times higher than that of g-C3N4, In2.77S4 and In2.77S4/g-C3N4 respectively. Further investigation shows that the charge carriers transfer between g-C3N4 and In2.77S4 follows a S-scheme transfer route on the basis of the photoelectrochemical tests and density functional theory (DFT) calculations. In addition, NiS2 as an electron-bridge can further improve the charge transfer between the interface of g-C3N4 and In2.77S4, making more useful electrons and holes with strong REDOX capacity participating the surface reactions. What’s more, In2.77S4/NiS2 can also induce more electrochemical active sites, which can lead to a faster surface H2 releasing kinetics by reducing the overpotential of H2 evolution. This work offers an effective method for the designing novel g-C3N4-based S-scheme heterojunctions by introducing a charge-bridge to facilitate the charge carrier transfer between different photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI