Efficient photocatalytic H2 generation over In2.77S4/NiS2/g-C3N4 S-scheme heterojunction using NiS2 as electron-bridge

异质结 光催化 桥(图论) 材料科学 电子 化学工程 纳米技术 化学 光电子学 工程类 物理 催化作用 生物化学 内科学 量子力学 医学
作者
Zhuonan Lei,Xiaofei Cao,Jun Fan,Xiao Hu,Jun Hu,Neng Li,Tao Sun,Enzhou Liu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:457: 141249-141249 被引量:83
标识
DOI:10.1016/j.cej.2022.141249
摘要

Herein, In2.77S4/NiS2 heterojunction was firstly synthesized through an in-situ solvothermal method, then it was introduced to the surface of g-C3N4 to construct a ternary In2.77S4/NiS2/g-C3N4 S-scheme heterojunction via a simple physical solvent evaporation process. The investigation shows that the ternary In2.77S4/NiS2/g-C3N4 heterojunction exhibits an excellent light harvesting ability from 200 nm to 800 nm for the metallic-like NiS2 and the narrower bandgap of In2.77S4, it also has a better charge carrier separation and migration property compared to single and binary components. According to the photocatalytic tests, the photocatalytic H2 production rate over 20 wt% In2.77S4/NiS2/g-C3N4 can attain 7481.7 μmol·g−1·h−1, 52.5, 33.8 and 28.5 times higher than that of g-C3N4, In2.77S4 and In2.77S4/g-C3N4 respectively. Further investigation shows that the charge carriers transfer between g-C3N4 and In2.77S4 follows a S-scheme transfer route on the basis of the photoelectrochemical tests and density functional theory (DFT) calculations. In addition, NiS2 as an electron-bridge can further improve the charge transfer between the interface of g-C3N4 and In2.77S4, making more useful electrons and holes with strong REDOX capacity participating the surface reactions. What’s more, In2.77S4/NiS2 can also induce more electrochemical active sites, which can lead to a faster surface H2 releasing kinetics by reducing the overpotential of H2 evolution. This work offers an effective method for the designing novel g-C3N4-based S-scheme heterojunctions by introducing a charge-bridge to facilitate the charge carrier transfer between different photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七子完成签到 ,获得积分10
刚刚
郑盼秋完成签到,获得积分10
刚刚
youjiang发布了新的文献求助10
1秒前
3秒前
孤独收割人完成签到,获得积分10
3秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
5秒前
Upupcc发布了新的文献求助10
7秒前
7秒前
勤劳落雁发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
周周发布了新的文献求助10
9秒前
10秒前
科研通AI5应助解青文采纳,获得10
10秒前
科研通AI5应助魏伯安采纳,获得30
10秒前
nekoneko完成签到,获得积分10
13秒前
13秒前
14秒前
帅关发布了新的文献求助10
14秒前
yyyyy语言发布了新的文献求助10
15秒前
asheng98完成签到 ,获得积分10
16秒前
Chen完成签到,获得积分10
16秒前
慕青应助guajiguaji采纳,获得10
17秒前
圣晟胜发布了新的文献求助10
18秒前
18秒前
18秒前
不会失忆完成签到,获得积分10
20秒前
思源应助路边一颗小草采纳,获得10
20秒前
上官若男应助帅关采纳,获得10
21秒前
qin完成签到,获得积分10
22秒前
22秒前
流浪小诗人完成签到,获得积分10
22秒前
24秒前
知性的觅露完成签到,获得积分10
24秒前
朱湋帆完成签到 ,获得积分10
24秒前
devil发布了新的文献求助10
25秒前
乐乐应助咸鱼一号采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849