Mixed‐integer quadratic programming approach for noninvasive estimation of respiratory effort profile during pressure support ventilation

解算器 弹性 二次规划 呼吸生理学 通风(建筑) 整数规划 机械通风 计算机科学 二次方程 数学 数学优化 控制理论(社会学) 算法 应用数学 呼吸系统 医学 工程类 麻醉 人工智能 内科学 机械工程 几何学 控制(管理)
作者
Marcus Henrique Victor Júnior,Marcos R. O. A. Maximo,Monica M. S. Matsumoto,Sergio Luiz Pereira,Mauro R. Tucci
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
卷期号:39 (1) 被引量:1
标识
DOI:10.1002/cnm.3668
摘要

Information about respiratory mechanics such as resistance, elastance, and muscular pressure is important to mitigate ventilator-induced lung injury. Particularly during pressure support ventilation, the available options to quantify breathing effort and calculate respiratory system mechanics are often invasive or complex. We herein propose a robust and flexible estimation of respiratory effort better than current methods. We developed a method for non-invasively estimating breathing effort using only flow and pressure signals. Mixed-integer quadratic programming (MIQP) was employed, and the binary variables were the switching moments of the respiratory effort waveform. Mathematical constraints, based on ventilation physiology, were set for some variables to restrict feasible solutions. Simulated and patient data were used to verify our method, and the results were compared to an established estimation methodology. Our algorithm successfully estimated the respiratory effort, resistance, and elastance of the respiratory system, resulting in more robust performance and faster solver times than a previously proposed algorithm that used quadratic programming (QP) techniques. In a numerical simulation benchmark, the worst-case errors for resistance and elastance were 25% and 23% for QP versus <0.1% and <0.1% for MIQP, whose solver times were 4.7 s and 0.5 s, respectively. This approach can estimate several breathing effort profiles and identify the respiratory system's mechanical properties in invasively ventilated critically ill patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
awu发布了新的文献求助10
刚刚
mm发布了新的文献求助10
3秒前
cc完成签到,获得积分10
4秒前
FJ完成签到,获得积分20
5秒前
5秒前
天天快乐应助小叶采纳,获得10
6秒前
脑洞疼应助wcx采纳,获得10
6秒前
chenlei完成签到,获得积分10
7秒前
9秒前
陆晓亦完成签到,获得积分10
10秒前
10秒前
wanci应助小木子采纳,获得10
10秒前
jdjf完成签到,获得积分10
11秒前
susu发布了新的文献求助10
12秒前
liubaogang发布了新的文献求助10
12秒前
12秒前
Ava应助清凉茶采纳,获得10
13秒前
14秒前
LL发布了新的文献求助30
14秒前
15秒前
15秒前
15秒前
15秒前
顺心的舞蹈完成签到,获得积分10
15秒前
volvoamg发布了新的文献求助10
16秒前
16秒前
小二郎应助mm采纳,获得10
16秒前
17秒前
17秒前
18秒前
18秒前
72完成签到 ,获得积分10
19秒前
jbear发布了新的文献求助10
19秒前
打打应助jxing1027采纳,获得10
19秒前
20秒前
Kk完成签到,获得积分20
20秒前
20秒前
ZX0501完成签到,获得积分10
21秒前
HY发布了新的文献求助10
22秒前
kang12发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161454
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897283
捐赠科研通 2471758
什么是DOI,文献DOI怎么找? 1316122
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112