Estimation of Land Surface Downward Shortwave Radiation Using Spectral-Based Convolutional Neural Network Methods: A Case Study From the Visible Infrared Imaging Radiometer Suite Images

可见红外成像辐射计套件 遥感 卷积神经网络 辐射传输 计算机科学 卫星 辐射计 均方误差 短波辐射 大气辐射传输码 算法 短波 人工智能 辐射 数学 物理 地质学 光学 统计 天文
作者
Yi Zhang,Shunlin Liang,Tao He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2022.3210990
摘要

Surface downward shortwave radiation (DSR) is a key parameter in Earth’s surface radiation budget. Many satellite products have been developed, but their accuracies need further improvements. This study proposed an innovative deep learning method that combines radiative-transfer (RT) modeling with convolutional neural network (CNN) learning for estimating instantaneous DSR from VIIRS observations. Unlike traditional CNN methods that rely on spatial contextual information and are not optimal for medium to coarse resolution satellite data, the proposed algorithm takes advantage of both spectral information as well as vertical information. The algorithm firstly estimates the atmospheric effective optical depth from TOA and surface reflectance by using the look-up table created by radiative transfer simulations. We then constructed a spectral-wised virtual matrix to train the CNN using surface DSR measurements at 34 Baseline Surface Radiation Network sites globally during 2013. The developed CNN was also compared with four traditional machine learning algorithms. The validation results showed that the root mean square error (RMSE) and the bias were 91.42 W/m 2 and -0.94 W/m 2 respectively. This research is the first spectral-wised CNN application to estimate surface biophysical parameters from satellite remote sensing data quantitively. The comparison with previous look-up table and optimization-based algorithms shows that the proposed algorithm outperforms by around 10~20 W/m 2 We also explored how transfer learning can further improve the DSR estimation. Our results indicate that the universal model with local data transfer learning outperforms either the CNN with local data or the universal CNN by around 10~20 W/m 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书是人类进步的阶梯完成签到 ,获得积分10
2秒前
2秒前
2秒前
共享精神应助dd99081采纳,获得10
2秒前
小罗黑的完成签到,获得积分10
3秒前
沉默冬卉完成签到,获得积分10
5秒前
yyyyxxxg完成签到,获得积分10
5秒前
kangkang发布了新的文献求助10
5秒前
豆芽完成签到,获得积分10
7秒前
田様应助科研通管家采纳,获得10
10秒前
tramp应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
Snow111关注了科研通微信公众号
12秒前
Robert完成签到,获得积分20
13秒前
shardowzx发布了新的文献求助10
13秒前
15秒前
热情的明轩完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
田様应助q792309106采纳,获得10
20秒前
慕青应助vane采纳,获得10
20秒前
小勇仔完成签到,获得积分10
21秒前
23秒前
淡淡成威完成签到 ,获得积分10
23秒前
24秒前
小勇仔发布了新的文献求助10
24秒前
25秒前
sdshi发布了新的文献求助10
27秒前
七七发布了新的文献求助10
27秒前
暮葵发布了新的文献求助10
28秒前
完美世界应助duanhahaha采纳,获得10
28秒前
dd99081发布了新的文献求助10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152