Estimation of Land Surface Downward Shortwave Radiation Using Spectral-Based Convolutional Neural Network Methods: A Case Study From the Visible Infrared Imaging Radiometer Suite Images

可见红外成像辐射计套件 遥感 卷积神经网络 辐射传输 计算机科学 卫星 辐射计 均方误差 短波辐射 大气辐射传输码 算法 短波 人工智能 辐射 数学 物理 地质学 光学 统计 天文
作者
Yi Zhang,Shunlin Liang,Tao He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2022.3210990
摘要

Surface downward shortwave radiation (DSR) is a key parameter in Earth’s surface radiation budget. Many satellite products have been developed, but their accuracies need further improvements. This study proposed an innovative deep learning method that combines radiative-transfer (RT) modeling with convolutional neural network (CNN) learning for estimating instantaneous DSR from VIIRS observations. Unlike traditional CNN methods that rely on spatial contextual information and are not optimal for medium to coarse resolution satellite data, the proposed algorithm takes advantage of both spectral information as well as vertical information. The algorithm firstly estimates the atmospheric effective optical depth from TOA and surface reflectance by using the look-up table created by radiative transfer simulations. We then constructed a spectral-wised virtual matrix to train the CNN using surface DSR measurements at 34 Baseline Surface Radiation Network sites globally during 2013. The developed CNN was also compared with four traditional machine learning algorithms. The validation results showed that the root mean square error (RMSE) and the bias were 91.42 W/m 2 and -0.94 W/m 2 respectively. This research is the first spectral-wised CNN application to estimate surface biophysical parameters from satellite remote sensing data quantitively. The comparison with previous look-up table and optimization-based algorithms shows that the proposed algorithm outperforms by around 10~20 W/m 2 We also explored how transfer learning can further improve the DSR estimation. Our results indicate that the universal model with local data transfer learning outperforms either the CNN with local data or the universal CNN by around 10~20 W/m 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
chenying完成签到,获得积分10
1秒前
1秒前
yang完成签到,获得积分10
1秒前
天真的映波完成签到,获得积分10
1秒前
科研通AI6应助青木蓝采纳,获得10
2秒前
2秒前
2秒前
多米完成签到,获得积分10
2秒前
科研通AI6应助fei采纳,获得10
2秒前
ddd关闭了ddd文献求助
2秒前
小胡完成签到,获得积分10
2秒前
Joel完成签到,获得积分10
2秒前
Wanan发布了新的文献求助10
3秒前
3秒前
3秒前
感动满天完成签到,获得积分10
3秒前
Orange应助niuma采纳,获得30
3秒前
xcgh给perry的求助进行了留言
4秒前
丁一完成签到,获得积分20
4秒前
浮游应助Frank采纳,获得10
4秒前
深情安青应助柳橙采纳,获得20
4秒前
zhaowei发布了新的文献求助10
5秒前
5秒前
kamenashi完成签到,获得积分10
6秒前
单薄的煎蛋完成签到,获得积分10
6秒前
吒猫发布了新的文献求助10
6秒前
dis完成签到,获得积分10
7秒前
青山发布了新的文献求助10
7秒前
7秒前
11完成签到 ,获得积分10
7秒前
zhhhh发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
汉堡包应助亿眼万年采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166574
求助须知:如何正确求助?哪些是违规求助? 4358543
关于积分的说明 13570767
捐赠科研通 4205109
什么是DOI,文献DOI怎么找? 2306149
邀请新用户注册赠送积分活动 1305922
关于科研通互助平台的介绍 1252367