亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of Land Surface Downward Shortwave Radiation Using Spectral-Based Convolutional Neural Network Methods: A Case Study From the Visible Infrared Imaging Radiometer Suite Images

可见红外成像辐射计套件 遥感 卷积神经网络 辐射传输 计算机科学 卫星 辐射计 均方误差 短波辐射 大气辐射传输码 算法 短波 人工智能 辐射 数学 物理 地质学 光学 统计 天文
作者
Yi Zhang,Shunlin Liang,Tao He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2022.3210990
摘要

Surface downward shortwave radiation (DSR) is a key parameter in Earth’s surface radiation budget. Many satellite products have been developed, but their accuracies need further improvements. This study proposed an innovative deep learning method that combines radiative-transfer (RT) modeling with convolutional neural network (CNN) learning for estimating instantaneous DSR from VIIRS observations. Unlike traditional CNN methods that rely on spatial contextual information and are not optimal for medium to coarse resolution satellite data, the proposed algorithm takes advantage of both spectral information as well as vertical information. The algorithm firstly estimates the atmospheric effective optical depth from TOA and surface reflectance by using the look-up table created by radiative transfer simulations. We then constructed a spectral-wised virtual matrix to train the CNN using surface DSR measurements at 34 Baseline Surface Radiation Network sites globally during 2013. The developed CNN was also compared with four traditional machine learning algorithms. The validation results showed that the root mean square error (RMSE) and the bias were 91.42 W/m 2 and -0.94 W/m 2 respectively. This research is the first spectral-wised CNN application to estimate surface biophysical parameters from satellite remote sensing data quantitively. The comparison with previous look-up table and optimization-based algorithms shows that the proposed algorithm outperforms by around 10~20 W/m 2 We also explored how transfer learning can further improve the DSR estimation. Our results indicate that the universal model with local data transfer learning outperforms either the CNN with local data or the universal CNN by around 10~20 W/m 2 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
56秒前
1分钟前
1分钟前
Yikao完成签到 ,获得积分10
2分钟前
ZIJUNZHAO完成签到 ,获得积分10
2分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
总是很简单完成签到 ,获得积分10
3分钟前
Ykaor完成签到 ,获得积分10
3分钟前
古铜完成签到 ,获得积分10
3分钟前
3分钟前
乐正文涛发布了新的文献求助10
3分钟前
ajing完成签到,获得积分10
3分钟前
QYQ完成签到 ,获得积分10
3分钟前
msk完成签到 ,获得积分10
4分钟前
乐正怡完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
FMHChan完成签到,获得积分10
5分钟前
cy0824完成签到 ,获得积分10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
7分钟前
铭铭完成签到 ,获得积分10
7分钟前
FashionBoy应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
Attaa完成签到,获得积分10
10分钟前
10分钟前
木木发布了新的文献求助10
10分钟前
11分钟前
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
gexzygg应助科研通管家采纳,获得10
11分钟前
11分钟前
科研通AI6应助年轻的雁露采纳,获得30
11分钟前
11分钟前
BowieHuang应助冷酷的寒天采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557