Estimation of Land Surface Downward Shortwave Radiation Using Spectral-Based Convolutional Neural Network Methods: A Case Study From the Visible Infrared Imaging Radiometer Suite Images

可见红外成像辐射计套件 遥感 卷积神经网络 辐射传输 计算机科学 卫星 辐射计 均方误差 短波辐射 大气辐射传输码 算法 短波 人工智能 辐射 数学 物理 地质学 光学 统计 天文
作者
Yi Zhang,Shunlin Liang,Tao He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2022.3210990
摘要

Surface downward shortwave radiation (DSR) is a key parameter in Earth’s surface radiation budget. Many satellite products have been developed, but their accuracies need further improvements. This study proposed an innovative deep learning method that combines radiative-transfer (RT) modeling with convolutional neural network (CNN) learning for estimating instantaneous DSR from VIIRS observations. Unlike traditional CNN methods that rely on spatial contextual information and are not optimal for medium to coarse resolution satellite data, the proposed algorithm takes advantage of both spectral information as well as vertical information. The algorithm firstly estimates the atmospheric effective optical depth from TOA and surface reflectance by using the look-up table created by radiative transfer simulations. We then constructed a spectral-wised virtual matrix to train the CNN using surface DSR measurements at 34 Baseline Surface Radiation Network sites globally during 2013. The developed CNN was also compared with four traditional machine learning algorithms. The validation results showed that the root mean square error (RMSE) and the bias were 91.42 W/m 2 and -0.94 W/m 2 respectively. This research is the first spectral-wised CNN application to estimate surface biophysical parameters from satellite remote sensing data quantitively. The comparison with previous look-up table and optimization-based algorithms shows that the proposed algorithm outperforms by around 10~20 W/m 2 We also explored how transfer learning can further improve the DSR estimation. Our results indicate that the universal model with local data transfer learning outperforms either the CNN with local data or the universal CNN by around 10~20 W/m 2 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星毅完成签到,获得积分10
1秒前
ccc完成签到,获得积分10
2秒前
做的出来完成签到,获得积分10
2秒前
Susanx完成签到,获得积分10
2秒前
2秒前
看不见的蛋炒饭完成签到 ,获得积分10
2秒前
2秒前
沉默的莞完成签到,获得积分10
2秒前
纯真的夏兰完成签到,获得积分10
2秒前
塘仔完成签到,获得积分10
3秒前
橘子味完成签到 ,获得积分10
3秒前
3秒前
王哇噻完成签到 ,获得积分10
5秒前
正经大善人完成签到,获得积分10
5秒前
hyq008完成签到,获得积分10
6秒前
Dreamer完成签到,获得积分10
6秒前
6秒前
meizi0109完成签到 ,获得积分10
7秒前
ivvi完成签到,获得积分10
7秒前
614606480@qq.com完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
浮游应助康轲采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
万能图书馆应助Zo采纳,获得30
10秒前
糖炒小白云完成签到,获得积分10
10秒前
郝天鑫完成签到,获得积分10
10秒前
加减乘除发布了新的文献求助10
10秒前
风中的溪流完成签到,获得积分10
11秒前
李春生完成签到,获得积分10
11秒前
加油少年完成签到,获得积分10
12秒前
12秒前
美少叔叔完成签到 ,获得积分10
12秒前
13秒前
yw完成签到 ,获得积分10
13秒前
13秒前
jzs完成签到 ,获得积分10
13秒前
cxy完成签到,获得积分10
15秒前
cc完成签到,获得积分10
15秒前
巴达天使完成签到,获得积分10
16秒前
潇洒台灯完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131