清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Estimation of Land Surface Downward Shortwave Radiation Using Spectral-Based Convolutional Neural Network Methods: A Case Study From the Visible Infrared Imaging Radiometer Suite Images

可见红外成像辐射计套件 遥感 卷积神经网络 辐射传输 计算机科学 卫星 辐射计 均方误差 短波辐射 大气辐射传输码 算法 短波 人工智能 辐射 数学 物理 地质学 光学 统计 天文
作者
Yi Zhang,Shunlin Liang,Tao He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2022.3210990
摘要

Surface downward shortwave radiation (DSR) is a key parameter in Earth’s surface radiation budget. Many satellite products have been developed, but their accuracies need further improvements. This study proposed an innovative deep learning method that combines radiative-transfer (RT) modeling with convolutional neural network (CNN) learning for estimating instantaneous DSR from VIIRS observations. Unlike traditional CNN methods that rely on spatial contextual information and are not optimal for medium to coarse resolution satellite data, the proposed algorithm takes advantage of both spectral information as well as vertical information. The algorithm firstly estimates the atmospheric effective optical depth from TOA and surface reflectance by using the look-up table created by radiative transfer simulations. We then constructed a spectral-wised virtual matrix to train the CNN using surface DSR measurements at 34 Baseline Surface Radiation Network sites globally during 2013. The developed CNN was also compared with four traditional machine learning algorithms. The validation results showed that the root mean square error (RMSE) and the bias were 91.42 W/m 2 and -0.94 W/m 2 respectively. This research is the first spectral-wised CNN application to estimate surface biophysical parameters from satellite remote sensing data quantitively. The comparison with previous look-up table and optimization-based algorithms shows that the proposed algorithm outperforms by around 10~20 W/m 2 We also explored how transfer learning can further improve the DSR estimation. Our results indicate that the universal model with local data transfer learning outperforms either the CNN with local data or the universal CNN by around 10~20 W/m 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lei029完成签到,获得积分10
13秒前
17秒前
lei029发布了新的文献求助10
17秒前
25秒前
馆长举报空白求助涉嫌违规
29秒前
量子星尘发布了新的文献求助10
31秒前
woxinyouyou完成签到,获得积分0
1分钟前
馆长举报wy求助涉嫌违规
1分钟前
馆长举报zxk求助涉嫌违规
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
馆长举报violin求助涉嫌违规
1分钟前
2分钟前
馆长举报KK求助涉嫌违规
2分钟前
林夕完成签到 ,获得积分10
2分钟前
tutu完成签到,获得积分10
2分钟前
hunajx完成签到,获得积分10
2分钟前
馆长举报阿良求助涉嫌违规
2分钟前
馆长举报马也君求助涉嫌违规
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
馆长举报无语的玉米求助涉嫌违规
3分钟前
快乐学习每一天完成签到 ,获得积分10
3分钟前
菠萝包完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
gege完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
馆长举报英吉利25求助涉嫌违规
6分钟前
馆长举报四月求助涉嫌违规
7分钟前
7分钟前
7分钟前
顺利的雁梅完成签到 ,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
8分钟前
8分钟前
两个榴莲完成签到,获得积分0
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877