Estimation of Land Surface Downward Shortwave Radiation Using Spectral-Based Convolutional Neural Network Methods: A Case Study From the Visible Infrared Imaging Radiometer Suite Images

可见红外成像辐射计套件 遥感 卷积神经网络 辐射传输 计算机科学 卫星 辐射计 均方误差 短波辐射 大气辐射传输码 算法 短波 人工智能 辐射 数学 物理 地质学 光学 统计 天文
作者
Yi Zhang,Shunlin Liang,Tao He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2022.3210990
摘要

Surface downward shortwave radiation (DSR) is a key parameter in Earth’s surface radiation budget. Many satellite products have been developed, but their accuracies need further improvements. This study proposed an innovative deep learning method that combines radiative-transfer (RT) modeling with convolutional neural network (CNN) learning for estimating instantaneous DSR from VIIRS observations. Unlike traditional CNN methods that rely on spatial contextual information and are not optimal for medium to coarse resolution satellite data, the proposed algorithm takes advantage of both spectral information as well as vertical information. The algorithm firstly estimates the atmospheric effective optical depth from TOA and surface reflectance by using the look-up table created by radiative transfer simulations. We then constructed a spectral-wised virtual matrix to train the CNN using surface DSR measurements at 34 Baseline Surface Radiation Network sites globally during 2013. The developed CNN was also compared with four traditional machine learning algorithms. The validation results showed that the root mean square error (RMSE) and the bias were 91.42 W/m 2 and -0.94 W/m 2 respectively. This research is the first spectral-wised CNN application to estimate surface biophysical parameters from satellite remote sensing data quantitively. The comparison with previous look-up table and optimization-based algorithms shows that the proposed algorithm outperforms by around 10~20 W/m 2 We also explored how transfer learning can further improve the DSR estimation. Our results indicate that the universal model with local data transfer learning outperforms either the CNN with local data or the universal CNN by around 10~20 W/m 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ocean完成签到,获得积分10
2秒前
天tian完成签到,获得积分10
2秒前
2秒前
小鱼完成签到,获得积分20
3秒前
蜜獾完成签到,获得积分20
3秒前
来路遥迢应助黄金城采纳,获得10
4秒前
ZhangLetian关注了科研通微信公众号
4秒前
苏苏完成签到,获得积分10
4秒前
zhangqin完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
整齐的曼安完成签到,获得积分10
6秒前
6秒前
6秒前
小青椒应助1m4采纳,获得20
6秒前
6秒前
浅眸流年完成签到,获得积分10
6秒前
打打应助枳8705采纳,获得10
6秒前
6秒前
搜集达人应助Sthwrong采纳,获得10
7秒前
汉堡包应助无敌鱼采纳,获得10
7秒前
严好香完成签到 ,获得积分10
7秒前
林雨发布了新的文献求助10
7秒前
董泽云发布了新的文献求助10
8秒前
ttqql发布了新的文献求助10
8秒前
寒塘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
浮游应助研友_nVNBVn采纳,获得10
11秒前
11秒前
monster0101发布了新的文献求助80
11秒前
11秒前
HAO发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569