已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spectral and Spatial Feature Fusion for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 模式识别(心理学) 空间分析 编码器 卷积神经网络 转置 自编码 特征提取 计算机视觉 深度学习 数学 物理 特征向量 操作系统 统计 量子力学
作者
Siyuan Hao,Yufeng Xia,Lijian Zhou,Yuanxin Ye,Wei Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5
标识
DOI:10.1109/lgrs.2022.3223090
摘要

Compared with traditional images, hyperspectral images (HSI) not only have spatial information, but also have rich spectral information. However, the mainstream hyperspectral image classification (HIC) methods are all based on Convolutional Neural Network (CNN), which has great advantages in extracting spatial features, but it has certain limitations in dealing with spectral continuous sequence information. Therefore Transformer which is good at processing sequences, has also been gradually applied to HIC. Besides, Since HSI are typical three-dimensional structures, we believe that the correlation of the three dimensions is also an important information. So in order to fully extract the spectral spatial information, as well as the correlation of the three dimensions. we propose a spectral and spatial feature fusion module ( i.e ., TransCNN) for HIC. TransCNN consists of CNNs and a Transformer. The former is in charge of mining the spatial and spectral information from different dimensions, while the latter not only undertakes the most critical fusion but also captures the deeper relationship characteristics. We transpose the data to extract features and their correlation through three CNNs branches. we believe that these feature maps still have deep spectral information. Therefore, we have embedded them into one-dimensional vectors and use Transformer’s Encoder to extract features. However, some information will be lost when embedding into one-dimensional vectors. Therefore we use Decoder, which has been ignored in the field of vision, to fuse the features before passing Encoder and the features after extracted by Encoders. Two kinds of features are fused by Decoder, and the obtained information is finally input into the classifier for classification. Experimental results on real HSIs show that the proposed architecture can achieve competitive performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dream点壹完成签到,获得积分10
2秒前
2秒前
Alex关注了科研通微信公众号
2秒前
科研通AI5应助Min采纳,获得10
3秒前
SYLH完成签到,获得积分0
3秒前
XJT007完成签到 ,获得积分10
5秒前
6秒前
小小完成签到 ,获得积分10
6秒前
搜集达人应助为为为采纳,获得10
8秒前
灵巧土豆完成签到 ,获得积分10
8秒前
14秒前
大胆的凡儿完成签到 ,获得积分10
19秒前
Ava应助jie采纳,获得10
19秒前
默默板凳发布了新的文献求助30
20秒前
迷你的无声完成签到,获得积分10
20秒前
23秒前
25秒前
HUAhua花完成签到 ,获得积分10
28秒前
go发布了新的文献求助10
29秒前
31秒前
34秒前
36秒前
wsb76完成签到 ,获得积分10
37秒前
David应助go采纳,获得20
39秒前
科研仓鼠完成签到,获得积分10
39秒前
Alex发布了新的文献求助10
39秒前
枷锁完成签到 ,获得积分10
40秒前
tubaba8848完成签到,获得积分10
43秒前
go完成签到,获得积分20
47秒前
Z先生完成签到,获得积分10
53秒前
魔法签证1993完成签到,获得积分10
54秒前
陶阳完成签到,获得积分10
55秒前
我是老大应助科研仓鼠采纳,获得10
56秒前
DrN完成签到 ,获得积分10
59秒前
yanxueyi完成签到 ,获得积分10
1分钟前
jie完成签到,获得积分10
1分钟前
lu完成签到,获得积分10
1分钟前
头孢西丁完成签到 ,获得积分10
1分钟前
金钰贝儿完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757989
求助须知:如何正确求助?哪些是违规求助? 3300998
关于积分的说明 10115991
捐赠科研通 3015465
什么是DOI,文献DOI怎么找? 1656044
邀请新用户注册赠送积分活动 790218
科研通“疑难数据库(出版商)”最低求助积分说明 753744