Spectral and Spatial Feature Fusion for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 模式识别(心理学) 空间分析 编码器 卷积神经网络 转置 自编码 特征提取 计算机视觉 深度学习 数学 物理 特征向量 操作系统 统计 量子力学
作者
Siyuan Hao,Yufeng Xia,Lijian Zhou,Yuanxin Ye,Wei Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5
标识
DOI:10.1109/lgrs.2022.3223090
摘要

Compared with traditional images, hyperspectral images (HSI) not only have spatial information, but also have rich spectral information. However, the mainstream hyperspectral image classification (HIC) methods are all based on Convolutional Neural Network (CNN), which has great advantages in extracting spatial features, but it has certain limitations in dealing with spectral continuous sequence information. Therefore Transformer which is good at processing sequences, has also been gradually applied to HIC. Besides, Since HSI are typical three-dimensional structures, we believe that the correlation of the three dimensions is also an important information. So in order to fully extract the spectral spatial information, as well as the correlation of the three dimensions. we propose a spectral and spatial feature fusion module ( i.e ., TransCNN) for HIC. TransCNN consists of CNNs and a Transformer. The former is in charge of mining the spatial and spectral information from different dimensions, while the latter not only undertakes the most critical fusion but also captures the deeper relationship characteristics. We transpose the data to extract features and their correlation through three CNNs branches. we believe that these feature maps still have deep spectral information. Therefore, we have embedded them into one-dimensional vectors and use Transformer’s Encoder to extract features. However, some information will be lost when embedding into one-dimensional vectors. Therefore we use Decoder, which has been ignored in the field of vision, to fuse the features before passing Encoder and the features after extracted by Encoders. Two kinds of features are fused by Decoder, and the obtained information is finally input into the classifier for classification. Experimental results on real HSIs show that the proposed architecture can achieve competitive performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助于瑜与余采纳,获得10
2秒前
2秒前
顾矜应助安详鸿采纳,获得30
2秒前
3秒前
多情翠丝发布了新的文献求助10
3秒前
万能图书馆应助zero桥采纳,获得10
3秒前
夜猫放羊完成签到,获得积分10
4秒前
4秒前
SPF发布了新的文献求助30
6秒前
6秒前
6秒前
夜猫放羊发布了新的文献求助20
7秒前
8秒前
jzmupyj完成签到,获得积分10
9秒前
智挂东南枝完成签到,获得积分10
9秒前
9秒前
spinning发布了新的文献求助10
9秒前
9秒前
丁一完成签到,获得积分10
9秒前
eugene_sysu发布了新的文献求助10
10秒前
10秒前
乐观若之发布了新的文献求助20
11秒前
12秒前
祭音发布了新的文献求助10
12秒前
AlvinCZY发布了新的文献求助10
13秒前
13秒前
13秒前
勤劳野狼发布了新的文献求助10
14秒前
搞怪烨伟发布了新的文献求助10
14秒前
惊鸿客发布了新的文献求助20
16秒前
橙鹿鹿的猫完成签到,获得积分10
17秒前
eureka发布了新的文献求助10
17秒前
英姑应助故意的怜晴采纳,获得10
17秒前
彗星炒饭完成签到,获得积分10
17秒前
fffgz完成签到 ,获得积分10
17秒前
liaoyoujiao发布了新的文献求助10
17秒前
爱卿5271完成签到,获得积分10
18秒前
18秒前
nena发布了新的文献求助10
18秒前
ured完成签到,获得积分20
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905