Spectral and Spatial Feature Fusion for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 模式识别(心理学) 空间分析 编码器 卷积神经网络 转置 自编码 特征提取 计算机视觉 深度学习 数学 物理 特征向量 操作系统 统计 量子力学
作者
Siyuan Hao,Yufeng Xia,Lijian Zhou,Yuanxin Ye,Wei Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5
标识
DOI:10.1109/lgrs.2022.3223090
摘要

Compared with traditional images, hyperspectral images (HSI) not only have spatial information, but also have rich spectral information. However, the mainstream hyperspectral image classification (HIC) methods are all based on Convolutional Neural Network (CNN), which has great advantages in extracting spatial features, but it has certain limitations in dealing with spectral continuous sequence information. Therefore Transformer which is good at processing sequences, has also been gradually applied to HIC. Besides, Since HSI are typical three-dimensional structures, we believe that the correlation of the three dimensions is also an important information. So in order to fully extract the spectral spatial information, as well as the correlation of the three dimensions. we propose a spectral and spatial feature fusion module ( i.e ., TransCNN) for HIC. TransCNN consists of CNNs and a Transformer. The former is in charge of mining the spatial and spectral information from different dimensions, while the latter not only undertakes the most critical fusion but also captures the deeper relationship characteristics. We transpose the data to extract features and their correlation through three CNNs branches. we believe that these feature maps still have deep spectral information. Therefore, we have embedded them into one-dimensional vectors and use Transformer’s Encoder to extract features. However, some information will be lost when embedding into one-dimensional vectors. Therefore we use Decoder, which has been ignored in the field of vision, to fuse the features before passing Encoder and the features after extracted by Encoders. Two kinds of features are fused by Decoder, and the obtained information is finally input into the classifier for classification. Experimental results on real HSIs show that the proposed architecture can achieve competitive performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYJ发布了新的文献求助30
刚刚
1秒前
要减肥天问发布了新的文献求助100
1秒前
2秒前
3秒前
我是老大应助adsifhaidugw采纳,获得10
3秒前
机智幻嫣完成签到,获得积分10
4秒前
5秒前
可乐发布了新的文献求助10
6秒前
7秒前
WWWUBING发布了新的文献求助20
7秒前
Owen应助王金豪采纳,获得10
7秒前
灌饼高手发布了新的文献求助10
7秒前
7秒前
8秒前
淡然依凝发布了新的文献求助30
9秒前
生动路人应助dirac采纳,获得10
9秒前
向峻熙发布了新的文献求助10
9秒前
wenli完成签到,获得积分10
9秒前
lan发布了新的文献求助10
10秒前
10秒前
星辰大海应助思维隋采纳,获得30
10秒前
向向卉发布了新的文献求助10
11秒前
香蕉觅云应助zy95282采纳,获得30
12秒前
14秒前
Ava应助耀阳采纳,获得10
14秒前
15秒前
领导范儿应助个性傲蕾采纳,获得10
15秒前
orixero应助moiumuio采纳,获得10
15秒前
克丽发布了新的文献求助30
15秒前
15秒前
Molinxue发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
20秒前
20秒前
朴素靖琪发布了新的文献求助30
21秒前
new发布了新的文献求助10
22秒前
可乐完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070