Spectral and Spatial Feature Fusion for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 模式识别(心理学) 空间分析 编码器 卷积神经网络 转置 自编码 特征提取 计算机视觉 深度学习 数学 物理 特征向量 操作系统 统计 量子力学
作者
Siyuan Hao,Yufeng Xia,Lijian Zhou,Yuanxin Ye,Wei Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5
标识
DOI:10.1109/lgrs.2022.3223090
摘要

Compared with traditional images, hyperspectral images (HSI) not only have spatial information, but also have rich spectral information. However, the mainstream hyperspectral image classification (HIC) methods are all based on Convolutional Neural Network (CNN), which has great advantages in extracting spatial features, but it has certain limitations in dealing with spectral continuous sequence information. Therefore Transformer which is good at processing sequences, has also been gradually applied to HIC. Besides, Since HSI are typical three-dimensional structures, we believe that the correlation of the three dimensions is also an important information. So in order to fully extract the spectral spatial information, as well as the correlation of the three dimensions. we propose a spectral and spatial feature fusion module ( i.e ., TransCNN) for HIC. TransCNN consists of CNNs and a Transformer. The former is in charge of mining the spatial and spectral information from different dimensions, while the latter not only undertakes the most critical fusion but also captures the deeper relationship characteristics. We transpose the data to extract features and their correlation through three CNNs branches. we believe that these feature maps still have deep spectral information. Therefore, we have embedded them into one-dimensional vectors and use Transformer’s Encoder to extract features. However, some information will be lost when embedding into one-dimensional vectors. Therefore we use Decoder, which has been ignored in the field of vision, to fuse the features before passing Encoder and the features after extracted by Encoders. Two kinds of features are fused by Decoder, and the obtained information is finally input into the classifier for classification. Experimental results on real HSIs show that the proposed architecture can achieve competitive performance compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助sun采纳,获得10
刚刚
handsomecat发布了新的文献求助10
刚刚
乐乐关注了科研通微信公众号
刚刚
刚刚
Kriemhild完成签到,获得积分10
1秒前
dz完成签到,获得积分10
1秒前
小可发布了新的文献求助10
1秒前
夜雨声烦完成签到,获得积分10
1秒前
MrCoolWu发布了新的文献求助10
1秒前
过时的不评完成签到,获得积分10
2秒前
2秒前
2秒前
月儿发布了新的文献求助10
3秒前
落落完成签到 ,获得积分10
3秒前
羊羊完成签到 ,获得积分20
3秒前
宁听白发布了新的文献求助10
4秒前
rookie_b0完成签到,获得积分10
4秒前
4秒前
wangyanyan完成签到,获得积分20
4秒前
标致小伙完成签到,获得积分10
5秒前
5秒前
Harlotte发布了新的文献求助10
6秒前
6秒前
潦草发布了新的文献求助10
6秒前
丘比特应助Ll采纳,获得10
7秒前
7秒前
yu完成签到 ,获得积分10
7秒前
小蘑菇应助zzznznnn采纳,获得10
7秒前
Orange应助俊秀的白猫采纳,获得30
8秒前
深情安青应助小可采纳,获得10
8秒前
8秒前
情怀应助pearl采纳,获得10
8秒前
9秒前
所所应助cybbbbbb采纳,获得10
9秒前
果汁发布了新的文献求助10
9秒前
10秒前
10秒前
Lucas应助柚子采纳,获得10
10秒前
MADKAI发布了新的文献求助10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759