Compositional Graphical Lasso Resolves the Impact of Parasitic Infection on Gut Microbial Interaction Networks in a Zebrafish Model

生物 微生物群 计算生物学 图形模型 斑马鱼 基因组 共同进化 计算机科学 生态学 人工智能 生物信息学 遗传学 基因
作者
Chuan Tian,Duo Jiang,Austin Hammer,Thomas J. Sharpton,Yuan Jiang
出处
期刊:Journal of the American Statistical Association [Informa]
卷期号:: 1-15
标识
DOI:10.1080/01621459.2022.2164287
摘要

Understanding how microbes interact with each other is key to revealing the underlying role that microorganisms play in the host or environment and to identifying microorganisms as an agent that can potentially alter the host or environment. For example, understanding how the microbial interactions associate with parasitic infection can help resolve potential drug or diagnostic test for parasitic infection. To unravel the microbial interactions, existing tools often rely on graphical models to infer the conditional dependence of microbial abundances to represent their interactions. However, current methods do not simultaneously account for the discreteness, compositionality, and heterogeneity inherent to microbiome data. Thus, we build a new approach called “compositional graphical lasso” upon existing tools by incorporating the above characteristics into the graphical model explicitly. We illustrate the advantage of compositional graphical lasso over current methods under a variety of simulation scenarios and on a benchmark study, the Tara Oceans Project. Moreover, we present our results from the analysis of a dataset from the Zebrafish Parasite Infection Study, which aims to gain insight into how the gut microbiome and parasite burden covary during infection, thus, uncovering novel putative methods of disrupting parasite success. Our approach identifies changes in interaction degree between infected and uninfected individuals for three taxa, Photobacterium, Gemmobacter, and Paucibacter, which are inversely predicted by other methods. Further investigation of these method-specific taxa interaction changes reveals their biological plausibility. In particular, we speculate on the potential pathobiotic roles of Photobacterium and Gemmobacter in the zebrafish gut, and the potential probiotic role of Paucibacter. Collectively, our analyses demonstrate that compositional graphical lasso provides a powerful means of accurately resolving interactions between microbiota and can thus drive novel biological discovery. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张东磊完成签到,获得积分20
刚刚
1秒前
judy发布了新的文献求助10
1秒前
4秒前
Huck完成签到,获得积分10
4秒前
共享精神应助张东磊采纳,获得10
6秒前
bingshuaizhao发布了新的文献求助10
8秒前
10秒前
Cha完成签到 ,获得积分10
10秒前
酷酷涵阳发布了新的文献求助20
12秒前
12秒前
852应助judy采纳,获得10
12秒前
大模型应助lucky采纳,获得30
13秒前
坚定土豆完成签到,获得积分10
13秒前
柿饼完成签到,获得积分10
13秒前
13秒前
李爱国应助乔治采纳,获得10
14秒前
14秒前
柔弱云朵完成签到 ,获得积分10
14秒前
14秒前
yee发布了新的文献求助10
14秒前
Jrusha发布了新的文献求助10
15秒前
16秒前
好久不见发布了新的文献求助10
18秒前
18秒前
bingshuaizhao完成签到,获得积分10
18秒前
秀丽雁风发布了新的文献求助50
19秒前
20秒前
科研通AI2S应助圈圈采纳,获得10
20秒前
20秒前
21秒前
22秒前
秀丽雁风完成签到,获得积分10
23秒前
苦杏仁应助向日葵采纳,获得10
24秒前
子啼当归完成签到,获得积分10
24秒前
25秒前
张东磊发布了新的文献求助10
26秒前
26秒前
26秒前
nil给nil的求助进行了留言
27秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198