通风(建筑)
沉积(地质)
航程(航空)
材料科学
机械
环境科学
计算流体力学
呼吸系统
模拟
化学
物理
计算机科学
气象学
医学
复合材料
生物
解剖
古生物学
沉积物
作者
Jianjian Wei,Lei Wang,Tao Jin,Yuguo Li,Nan Zhang
标识
DOI:10.1016/j.buildenv.2022.109973
摘要
To quantify the risk of the transmission of respiratory infections in indoor environments, we systematically assessed exposure to talking- and breathing-generated respiratory droplets in a generic indoor environment using computational fluid dynamic (CFD) simulations. The flow field in the indoor environment was obtained with SST k-ω model and Lagrangian method was used to predict droplet trajectories, where droplet evaporation was considered. Droplets can be categorized into small droplets (initial size ≤30 μm or ≤10 μm as droplet nuclei), medium droplets (30–80 μm) and large droplets (>100 μm) according to the exposure characteristics. Droplets up to 100 μm, particular the small ones, can contribute to both short-range and long-range airborne routes. For the face-to-face talking scenario, the intake fraction and deposition fractions of droplets on the face and facial mucosa of the susceptible were up to 4.96%, 2.14%, and 0.12%, respectively, indicating inhalation is the dominant route. The exposure risk from a talking infector decreases monotonically with the interpersonal distance, while that of nasal-breathing generated droplets maintains a relatively stable level within 1.0 m. Keeping an angle of 15° or above with the expiratory flow is efficient to reduce intake fractions to <0.37% for small droplets. Adjusting the orientation from face-to-face to face-to-back can reduce exposure to small droplets by approximately 88.0% during talking and 66.2% during breathing. A higher ventilation rate can reduce the risk of exposure to small droplets but may increase the risk of transmission via medium droplets by enhancing their evaporation rate. This study would serve as a fundamental research for epidemiologist, healthcare workers and the public in the purpose of infection control.
科研通智能强力驱动
Strongly Powered by AbleSci AI