A deep learning solution to the marginal stability problems of acoustic feedback systems for hearing aids

相位裕度 控制理论(社会学) 环路增益 自动增益控制 计算机科学 助听器 理论(学习稳定性) 话筒 开环增益 还原(数学) 反馈回路 数学 声学 放大器 控制(管理) 电信 物理 人工智能 机器学习 带宽(计算) 运算放大器 电压 声压 量子力学 计算机安全 几何学
作者
Chengshi Zheng,Meihuang Wang,Xiaodong Li,Brian C. J. Moore
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:152 (6): 3616-3634 被引量:6
标识
DOI:10.1121/10.0016589
摘要

For hearing aids, it is critical to reduce the acoustic coupling between the receiver and microphone to ensure that prescribed gains are below the maximum stable gain, thus preventing acoustic feedback. Methods for doing this include fixed and adaptive feedback cancellation, phase modulation, and gain reduction. However, the behavior of hearing aids in situations where the prescribed gain is only just below the maximum stable gain, called here "marginally stable gain," is not well understood. This paper analyzed marginally stable systems and identified three problems, including increased gain at frequencies with the smallest gain margin, short whistles caused by the limited rate of decay of the output when the input drops, and coloration effects. A deep learning framework, called deep marginal feedback cancellation (DeepMFC), was developed to suppress short whistles, and reduce coloration effects, as well as to limit excess amplification at certain frequencies. To implement DeepMFC, many receiver signals in closed-loop systems and corresponding open-loop systems were simulated, and the receiver signals of the closed-loop and open-loop systems were paired together to obtain parallel signals for training. DeepMFC achieved much better performance than existing feedback control methods using objective and subjective measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助杨杨采纳,获得30
刚刚
刚刚
TIMF14完成签到,获得积分10
1秒前
搜集达人应助丛柳采纳,获得10
2秒前
zwy发布了新的文献求助10
3秒前
缺文献完成签到,获得积分10
4秒前
lou发布了新的文献求助80
4秒前
BCyu发布了新的文献求助10
6秒前
上官若男应助xzl采纳,获得10
6秒前
7秒前
cocolu应助mj采纳,获得10
8秒前
SYX完成签到 ,获得积分10
9秒前
9秒前
寂川发布了新的文献求助30
10秒前
布丁发布了新的文献求助10
10秒前
淡然又菡发布了新的文献求助30
11秒前
达叔完成签到,获得积分10
11秒前
学术暴君完成签到,获得积分10
12秒前
欧阳万仇发布了新的文献求助10
12秒前
姬超岳完成签到,获得积分10
14秒前
mj完成签到,获得积分10
16秒前
淡然又菡完成签到,获得积分10
17秒前
英姑应助xinbowey采纳,获得10
18秒前
Mess完成签到,获得积分10
18秒前
19秒前
Kitty发布了新的文献求助30
19秒前
22秒前
邓希静完成签到 ,获得积分10
23秒前
27秒前
tinydog完成签到,获得积分10
28秒前
xzl发布了新的文献求助10
29秒前
daizi0104发布了新的文献求助10
30秒前
30秒前
31秒前
李健的小迷弟应助kxm采纳,获得10
32秒前
应万言完成签到,获得积分0
34秒前
Lori发布了新的文献求助10
34秒前
Forest发布了新的文献求助10
35秒前
35秒前
zyt发布了新的文献求助10
36秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343625
求助须知:如何正确求助?哪些是违规求助? 2970630
关于积分的说明 8644716
捐赠科研通 2650766
什么是DOI,文献DOI怎么找? 1451444
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569