A deep learning solution to the marginal stability problems of acoustic feedback systems for hearing aids

相位裕度 控制理论(社会学) 环路增益 自动增益控制 计算机科学 助听器 理论(学习稳定性) 话筒 开环增益 还原(数学) 反馈回路 数学 声学 放大器 控制(管理) 电信 物理 人工智能 机器学习 带宽(计算) 运算放大器 电压 声压 量子力学 计算机安全 几何学
作者
Chengshi Zheng,Meihuang Wang,Xiaodong Li,Brian C. J. Moore
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:152 (6): 3616-3634 被引量:8
标识
DOI:10.1121/10.0016589
摘要

For hearing aids, it is critical to reduce the acoustic coupling between the receiver and microphone to ensure that prescribed gains are below the maximum stable gain, thus preventing acoustic feedback. Methods for doing this include fixed and adaptive feedback cancellation, phase modulation, and gain reduction. However, the behavior of hearing aids in situations where the prescribed gain is only just below the maximum stable gain, called here "marginally stable gain," is not well understood. This paper analyzed marginally stable systems and identified three problems, including increased gain at frequencies with the smallest gain margin, short whistles caused by the limited rate of decay of the output when the input drops, and coloration effects. A deep learning framework, called deep marginal feedback cancellation (DeepMFC), was developed to suppress short whistles, and reduce coloration effects, as well as to limit excess amplification at certain frequencies. To implement DeepMFC, many receiver signals in closed-loop systems and corresponding open-loop systems were simulated, and the receiver signals of the closed-loop and open-loop systems were paired together to obtain parallel signals for training. DeepMFC achieved much better performance than existing feedback control methods using objective and subjective measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haralee完成签到 ,获得积分10
刚刚
刚刚
2秒前
bogula1112完成签到 ,获得积分10
2秒前
3秒前
4秒前
Rao完成签到,获得积分10
4秒前
大个应助qmx采纳,获得10
5秒前
5秒前
科研通AI6应助童紫槐采纳,获得10
6秒前
勇往直前发布了新的文献求助10
7秒前
7秒前
8秒前
Doc_Ocean完成签到,获得积分10
8秒前
佛山婆婆完成签到,获得积分10
9秒前
捞鱼完成签到,获得积分10
9秒前
10秒前
今后应助lucfer采纳,获得10
10秒前
橙子发布了新的文献求助10
10秒前
Wr发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
12秒前
13秒前
527发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
猫南北完成签到,获得积分10
15秒前
15秒前
阿文在读研完成签到,获得积分10
15秒前
烦恼快走开关注了科研通微信公众号
16秒前
远山发布了新的文献求助10
16秒前
1204发布了新的文献求助10
17秒前
wp发布了新的文献求助10
17秒前
cxcxcx完成签到,获得积分10
17秒前
qmx发布了新的文献求助10
19秒前
456完成签到,获得积分20
19秒前
刘玉千关注了科研通微信公众号
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Methane Conversion Routes 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048920
求助须知:如何正确求助?哪些是违规求助? 4277164
关于积分的说明 13332673
捐赠科研通 4091710
什么是DOI,文献DOI怎么找? 2239234
邀请新用户注册赠送积分活动 1246058
关于科研通互助平台的介绍 1174695