Development of a novel Ni-based composite via in-situ reinforcement units formed by high-density hierarchical nanoscale precipitates

材料科学 极限抗拉强度 放电等离子烧结 延展性(地球科学) 纳米尺度 复合材料 复合数 材料的强化机理 纳米复合材料 延伸率 晶界 微观结构 纳米技术 蠕动
作者
Nairan Wang,Zongqi Xiao,Shengyuan Li,Hao Wu,Zhuangzhuang Liu,Yan Wang
出处
期刊:Materials & Design [Elsevier BV]
卷期号:225: 111554-111554 被引量:2
标识
DOI:10.1016/j.matdes.2022.111554
摘要

In the present work, we selected (CoCrFeNiMn)90Hf10 amorphous high-entropy alloys (AHEAs) as the added particle into pure Ni powder and prepared novel Ni-based composites by spark plasma sintering (SPS). Three kinds of in-situ nanoscale reinforcements with face-centered cubic structure are obtained by phase separation and crystallization of AHEA in the Ni matrix during SPS, possessing different formation mechanisms, distribution sizes, and existing regions. It allows the formation of hierarchical nanoprecipitates through the interaction of Ni matrix and appropriately added AHEA, bringing about reinforcement unit formation with core–shell types embedded in the matrix. Accordingly, a significant enhancement in the strength and ductility synergy compared to SPS-ed pure Ni bulk is achieved. The 20 vol% AHEA/Ni-based composite achieves the optimal yield strength, ultimate tensile strength, and elongation of 358 MPa, 561 MPa, and 24.1%, respectively. The different types of in-situ hierarchical nanoscale precipitates in the Ni matrix manifest unique pinning behaviors for various defect forms. The disordered interfacial nanolayer obtained along the grain boundary between matrix and nanoprecipitate verifies the large tensile ductility. Moreover, the hierarchical dimples exhibiting a uniform distribution involving in reinforcement unit and Ni matrix also decipher the basis of the strength-ductility trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
XY发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
金光一闪发布了新的文献求助10
7秒前
hk1900发布了新的文献求助10
7秒前
9秒前
Legend_完成签到 ,获得积分10
9秒前
隐形曼青应助孙意冉采纳,获得10
10秒前
赘婿应助quxiaofei采纳,获得10
10秒前
xuan发布了新的文献求助20
11秒前
11秒前
Lucas应助最大的菠萝采纳,获得10
13秒前
15秒前
XY完成签到,获得积分20
16秒前
16秒前
小乐比发布了新的文献求助10
17秒前
正直无极发布了新的文献求助10
17秒前
18秒前
英姑应助黄大师采纳,获得10
18秒前
18秒前
思源应助An采纳,获得30
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
动漫大师发布了新的文献求助10
20秒前
华仔应助Desamin采纳,获得10
20秒前
呦呦呦嘿发布了新的文献求助10
20秒前
秋比特发布了新的文献求助30
21秒前
DrKe完成签到,获得积分10
22秒前
游大侠发布了新的文献求助10
22秒前
23秒前
清风白鹭发布了新的文献求助10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745678
求助须知:如何正确求助?哪些是违规求助? 3288630
关于积分的说明 10059868
捐赠科研通 3004874
什么是DOI,文献DOI怎么找? 1649899
邀请新用户注册赠送积分活动 785612
科研通“疑难数据库(出版商)”最低求助积分说明 751180