已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral imaging combined with convolutional neural network for accurately detecting adulteration in Atlantic salmon

VNIR公司 高光谱成像 卷积神经网络 人工智能 预处理器 模式识别(心理学) 计算机科学 掺假者 人工神经网络 航程(航空) 遥感 化学 色谱法 材料科学 地质学 复合材料
作者
Peng Li,Shuqi Tang,Shenghui Chen,Xingguo Tian,Nan Zhong
出处
期刊:Food Control [Elsevier]
卷期号:147: 109573-109573 被引量:18
标识
DOI:10.1016/j.foodcont.2022.109573
摘要

Fraud frequently occurs in Atlantic salmon market and is difficult or impossible to detect through visual inspection. This study was implemented to investigate the potential of two hyperspectral imaging (HSI) systems covering the visible and near infrared range (VNIR, 397–1003 nm) and the short-wave near infrared range (SWIR, 935–1720 nm), respectively, for rapidly and accurately determining adulteration in minced Atlantic salmon. The adulterated samples containing 11 adulteration levels (0–100% (w/w) at 10% intervals) were prepared manually. Four spectral preprocessing methods and five characteristic wavelength selection algorithms were employed to combine convolutional neural network (CNN) to establish quantitative models for predicting adulteration levels. The predictive ability of the two HSI systems was compared to reveal the optimal spectral detection range. After analysis, it was found that the modeling results using VNIR data were always better than those using SWIR data. In particular, the best prediction for VNIR was from the combination model SNV-CNN with the mean RP2, RMSEP and RPD of 0.9885, 3.3526 and 9.6882, respectively. The best performance for SWIR was from the combination model SNV-VCPA-IRIV-CNN with the mean RP2, RMSEP and RPD of 0.9839, 3.9926 and 8.0251, respectively. Further, the best models were successfully used to visualize the distribution of adulterant in prepared samples. Overall, this study demonstrated that HSI combined with CNN is a promising solution for the rapid, nondestructive and accurate detection of adulteration in Atlantic salmon. In addition, VNIR-HSI was considered to be more reasonable detection range due to its low cost and better prediction compared to SWIR-HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助牟白容采纳,获得10
1秒前
4秒前
6秒前
liuliu发布了新的文献求助10
10秒前
su完成签到,获得积分10
10秒前
polaris发布了新的文献求助10
11秒前
13秒前
15秒前
不去明知山完成签到 ,获得积分10
17秒前
19秒前
mmyhn发布了新的文献求助10
19秒前
jw82完成签到,获得积分10
21秒前
大模型应助漂亮的衬衫采纳,获得10
21秒前
zbx发布了新的文献求助10
22秒前
25秒前
dongua完成签到,获得积分10
31秒前
青春梦完成签到 ,获得积分10
32秒前
zbx完成签到,获得积分10
33秒前
33秒前
九日橙完成签到 ,获得积分10
37秒前
威武的翠安完成签到 ,获得积分10
40秒前
44秒前
46秒前
50秒前
可口可乐了应助多边棱采纳,获得20
52秒前
54秒前
55秒前
Akim应助123采纳,获得10
56秒前
efren1806完成签到,获得积分10
57秒前
59秒前
梨梨lilili发布了新的文献求助10
1分钟前
1分钟前
Dester发布了新的文献求助10
1分钟前
所所应助Gary采纳,获得10
1分钟前
1分钟前
纪富完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
热心的夜安完成签到,获得积分10
1分钟前
丘比特应助jxp采纳,获得10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146684
求助须知:如何正确求助?哪些是违规求助? 2798001
关于积分的说明 7826352
捐赠科研通 2454503
什么是DOI,文献DOI怎么找? 1306289
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522