材料科学
离子电导率
分离器(采油)
电解质
电池(电)
功率密度
电导率
化学工程
准固态
阴极
离子液体
离子键合
快离子导体
纳米技术
离子
电极
催化作用
有机化学
功率(物理)
物理化学
化学
热力学
物理
色素敏化染料
工程类
量子力学
作者
Aliya S. Lapp,Laura C. Merrill,Bryan R. Wygant,David S. Ashby,Austin Bhandarkar,Alan C. Zhang,Elliot J. Fuller,Katharine L. Harrison,Timothy N. Lambert,A. Alec Talin
标识
DOI:10.1021/acsami.2c16332
摘要
Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid-state ionogel separators harness the energy density and safety advantages of solid-state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid-state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm-2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high-concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (∼2 mS cm-1 at 25 °C) of an LHCE. The latter property is in contrast to previous solid-state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. The stable, room-temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI