材料科学
电催化剂
过电位
析氧
层状双氢氧化物
氢氧化物
分解水
无定形固体
化学工程
过渡金属
钴
电池(电)
氢氧化钴
电合成
无机化学
催化作用
电化学
冶金
有机化学
电极
物理化学
功率(物理)
化学
工程类
物理
光催化
量子力学
生物化学
作者
Masumeh Moloudi,Abolhassan Noori,Mohammad S. Rahmanifar,Yasin Shabangoli,Maher F. El‐Kady,Nahla B. Mohamed,Richard B. Kaner,Mir F. Mousavi
标识
DOI:10.1002/aenm.202203002
摘要
Abstract Layered double hydroxides (LDHs) stand out as versatile structural platforms for modulating the electronic structure of highly reactive earth‐abundant transition metal‐based electrocatalysts for the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR). Herein, a Ni‐Co‐Fe LDH, electrodeposited on a Ni nanocones (NiNCs)‐decorated Ni foam, acts as a morphology driving template to direct the facile constant potential electrosynthesis of NiCoFeB from a K 2 B 4 O 7 solution. The amorphous tri‐metal borate (TMB) displays excellent trifunctional electrocatalytic activities toward the HER (overpotential at 10 mA cm −2 , η 10 = 174 mV vs RHE), OER (η 10 = 208 mV), as well as ORR (half‐wave potential = 0.723 V) with a low Δ E OER−ORR of 770 mV, and excellent durability of over 110 h in alkaline solutions. A zinc–air battery based on the TMB@NiNC dual oxygen catalyst cathode exhibits a high open‐circuit voltage of 1.477 V, a power density of 107 mW cm −2 , a specific energy of 918 W h kg Zn −1 and an outstanding cycling stability of over 1330 cycles at 10 mA cm −2 , which outperforms the commercial noble metal benchmarks. These results demonstrate that LDHs are efficient sacrificial templates for the preparation of high‐performance multifunctional multi‐metal borate electrocatalysts for energy‐related applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI