亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Clustering Quasi-Line Search Path Planning Algorithm Based On Sampling

聚类分析 运动规划 数学优化 路径(计算) 采样(信号处理) 计算机科学 自适应采样 算法 最优化问题 数学 人工智能 蒙特卡罗方法 计算机视觉 滤波器(信号处理) 统计 程序设计语言 机器人
作者
Yifei Zhang,Zihao Zhang,Shiyuan Wang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (2): 1720-1734 被引量:3
标识
DOI:10.1109/tvt.2022.3212982
摘要

In this paper, the adaptive clustering quasi-line search path planning algorithm (ACPP) is proposed from the viewpoint of non-convex optimization in an artificial potential field (APF). In ACPP, the initial path is the trajectory of the optimization process from the initial point to the target one. In a complex environment, the drivable area is divided by the edges into many relatively isolated regions, which leads to a non-convex path planning problem. Therefore, the clustering based on path nodes is set adaptively to make the potential function of each isolated region convex in the potential field. In each isolated region, the environment can be perceived by updating the parameters with sampling based on probability distribution functions, and these functions have similar influence to the cost function in optimization. Inspired by convex optimization, the quasi-line search algorithm is proposed for sampling points. Therefore, ACPP reduces the number of samples, dramatically, and has advantages of both sampling-based and APF-based algorithms in path planning. Based on the line segment based map which can be obtained from sensors readily, a gridding strategy is used to further reduce the time complexity. A series of simulation and experiential results validate the effectiveness of ACPP in virtual and real-world environments, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Timelapse发布了新的文献求助10
2秒前
14秒前
黑摄会阿Fay完成签到,获得积分10
15秒前
BowieHuang应助Timelapse采纳,获得10
19秒前
甜橙完成签到 ,获得积分10
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
NattyPoe应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得20
29秒前
32秒前
852应助一碗鱼采纳,获得10
45秒前
wanci应助andrele采纳,获得10
49秒前
50秒前
量子星尘发布了新的文献求助10
51秒前
58秒前
一碗鱼发布了新的文献求助10
1分钟前
1分钟前
theo完成签到 ,获得积分10
1分钟前
糕冷草莓完成签到,获得积分10
1分钟前
英姑应助一碗鱼采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
一碗鱼完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
小糊涂仙儿完成签到 ,获得积分10
3分钟前
3分钟前
Isabelle发布了新的文献求助10
3分钟前
Timelapse发布了新的文献求助10
3分钟前
ZhiyunXu2012完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
惘然111222发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423