Adaptive Clustering Quasi-Line Search Path Planning Algorithm Based On Sampling

聚类分析 运动规划 数学优化 路径(计算) 采样(信号处理) 计算机科学 自适应采样 算法 最优化问题 数学 人工智能 蒙特卡罗方法 计算机视觉 统计 滤波器(信号处理) 机器人 程序设计语言
作者
Yifei Zhang,Zihao Zhang,Shiyuan Wang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (2): 1720-1734 被引量:3
标识
DOI:10.1109/tvt.2022.3212982
摘要

In this paper, the adaptive clustering quasi-line search path planning algorithm (ACPP) is proposed from the viewpoint of non-convex optimization in an artificial potential field (APF). In ACPP, the initial path is the trajectory of the optimization process from the initial point to the target one. In a complex environment, the drivable area is divided by the edges into many relatively isolated regions, which leads to a non-convex path planning problem. Therefore, the clustering based on path nodes is set adaptively to make the potential function of each isolated region convex in the potential field. In each isolated region, the environment can be perceived by updating the parameters with sampling based on probability distribution functions, and these functions have similar influence to the cost function in optimization. Inspired by convex optimization, the quasi-line search algorithm is proposed for sampling points. Therefore, ACPP reduces the number of samples, dramatically, and has advantages of both sampling-based and APF-based algorithms in path planning. Based on the line segment based map which can be obtained from sensors readily, a gridding strategy is used to further reduce the time complexity. A series of simulation and experiential results validate the effectiveness of ACPP in virtual and real-world environments, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的傻姑关注了科研通微信公众号
1秒前
wzf123456发布了新的文献求助10
1秒前
是木易呀应助儒雅沛蓝采纳,获得10
3秒前
CQUT完成签到,获得积分20
5秒前
平淡的天宇应助淡淡白梦采纳,获得10
6秒前
YJL发布了新的文献求助10
6秒前
Owen应助刘延延延延采纳,获得10
7秒前
8秒前
10秒前
11秒前
12秒前
小海棠发布了新的文献求助10
13秒前
13秒前
852应助美汁源采纳,获得10
13秒前
悦耳一江完成签到,获得积分10
13秒前
YJL完成签到,获得积分10
14秒前
15秒前
LQS发布了新的文献求助10
15秒前
奔跑的青霉素完成签到 ,获得积分10
17秒前
柯擎汉完成签到,获得积分10
18秒前
桐桐应助自觉的小凝采纳,获得10
19秒前
20秒前
英姑应助慈祥的爆米花采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
livra1058发布了新的文献求助10
21秒前
22秒前
22秒前
包容的小蘑菇完成签到 ,获得积分10
23秒前
无心的冰巧应助li1491556638采纳,获得30
24秒前
fkdbdy发布了新的文献求助10
24秒前
1111发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
27秒前
wzf123456发布了新的文献求助10
27秒前
宜醉宜游宜睡应助Fjj采纳,获得30
28秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3438944
求助须知:如何正确求助?哪些是违规求助? 3035694
关于积分的说明 8959924
捐赠科研通 2723618
什么是DOI,文献DOI怎么找? 1494146
科研通“疑难数据库(出版商)”最低求助积分说明 690662
邀请新用户注册赠送积分活动 686999