Enhanced orbital magnetic field effects in Ge hole nanowires

物理 凝聚态物理 量子位元 纳米线 束缚态 磁场 量子力学 量子
作者
Christoph Adelsberger,Stefano Bosco,Jelena Klinovaja,Daniel Loss
出处
期刊:Physical review [American Physical Society]
卷期号:106 (23) 被引量:11
标识
DOI:10.1103/physrevb.106.235408
摘要

Hole semiconductor nanowires (NW) are promising platforms to host spin qubits and Majorana bound states for topological qubits because of their strong spin-orbit interactions (SOI). The properties of these systems depend strongly on the design of the cross section and on strain, as well as on external electric and magnetic fields. In this paper, we analyze in detail the dependence of the SOI and $g$ factors on the orbital magnetic field. We focus on magnetic fields aligned along the axis of the NW, where orbital effects are enhanced and result in a renormalization of the effective $g$ factor up to $400%$, even at small values of magnetic field. We provide an exact analytical solution for holes in Ge NWs and we derive an effective low-energy model that enables us to investigate the effect of electric fields applied perpendicular to the NW. We also discuss in detail the role of strain, growth direction, and high-energy valence bands in different architectures, including Ge/Si core/shell NWs, gate-defined one-dimensional channels in planar Ge, and curved Ge quantum wells. By comparing NWs with different growth directions, we find that the isotropic approximation is well justified. Curved Ge quantum wells feature large effective $g$ factors and SOI at low electric field, ideal for hosting Majorana bound states. In contrast, at strong electric field, these quantities are independent of the field, making hole spin qubits encoded in curved quantum wells to good approximation not susceptible to charge noise, and significantly boosting their coherence time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨馨蕊发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
Ashuno完成签到,获得积分20
3秒前
3秒前
太阳阳完成签到,获得积分20
3秒前
李健的小迷弟应助李志豪采纳,获得10
4秒前
4秒前
7秒前
zyq完成签到,获得积分10
7秒前
万能图书馆应助YBW采纳,获得10
8秒前
坦率灵槐应助太阳阳采纳,获得10
8秒前
showmaker完成签到,获得积分10
9秒前
9秒前
9秒前
科研炸巴完成签到,获得积分10
9秒前
11秒前
淅淅沥沥发布了新的文献求助10
11秒前
11秒前
朱祥龙发布了新的文献求助10
13秒前
lhx发布了新的文献求助10
13秒前
三土应助hkh采纳,获得10
13秒前
无辜的丹雪应助hkh采纳,获得10
13秒前
霜降应助hkh采纳,获得10
13秒前
专注白昼应助hkh采纳,获得10
13秒前
别不开星完成签到,获得积分10
14秒前
虚拟的鞋垫完成签到,获得积分10
14秒前
gege发布了新的文献求助10
14秒前
14秒前
14秒前
科研炸巴发布了新的文献求助10
14秒前
15秒前
ZSH发布了新的文献求助10
16秒前
17秒前
17秒前
zzzwww发布了新的文献求助10
20秒前
kevindm发布了新的文献求助30
20秒前
20秒前
善良茗茗发布了新的文献求助10
21秒前
可爱的函函应助lhx采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573