已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhanced orbital magnetic field effects in Ge hole nanowires

物理 凝聚态物理 量子位元 纳米线 束缚态 磁场 量子力学 量子
作者
Christoph Adelsberger,Stefano Bosco,Jelena Klinovaja,Daniel Loss
出处
期刊:Physical review [American Physical Society]
卷期号:106 (23) 被引量:11
标识
DOI:10.1103/physrevb.106.235408
摘要

Hole semiconductor nanowires (NW) are promising platforms to host spin qubits and Majorana bound states for topological qubits because of their strong spin-orbit interactions (SOI). The properties of these systems depend strongly on the design of the cross section and on strain, as well as on external electric and magnetic fields. In this paper, we analyze in detail the dependence of the SOI and $g$ factors on the orbital magnetic field. We focus on magnetic fields aligned along the axis of the NW, where orbital effects are enhanced and result in a renormalization of the effective $g$ factor up to $400%$, even at small values of magnetic field. We provide an exact analytical solution for holes in Ge NWs and we derive an effective low-energy model that enables us to investigate the effect of electric fields applied perpendicular to the NW. We also discuss in detail the role of strain, growth direction, and high-energy valence bands in different architectures, including Ge/Si core/shell NWs, gate-defined one-dimensional channels in planar Ge, and curved Ge quantum wells. By comparing NWs with different growth directions, we find that the isotropic approximation is well justified. Curved Ge quantum wells feature large effective $g$ factors and SOI at low electric field, ideal for hosting Majorana bound states. In contrast, at strong electric field, these quantities are independent of the field, making hole spin qubits encoded in curved quantum wells to good approximation not susceptible to charge noise, and significantly boosting their coherence time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siqilinwillbephd完成签到,获得积分10
1秒前
yilongyy应助keeingGo采纳,获得10
1秒前
2秒前
yznfly应助俊俏的紫菜采纳,获得20
3秒前
3秒前
优雅山柏发布了新的文献求助10
3秒前
迷人芒果完成签到 ,获得积分10
5秒前
科研通AI6应助青栞采纳,获得10
5秒前
英俊的铭应助sweet采纳,获得10
5秒前
6秒前
东风发布了新的文献求助10
7秒前
green完成签到,获得积分10
8秒前
迅速的曼卉完成签到,获得积分10
9秒前
赘婿应助美好斓采纳,获得10
9秒前
11秒前
踏实初雪发布了新的文献求助10
12秒前
mxzan完成签到,获得积分10
13秒前
liang完成签到,获得积分10
13秒前
14秒前
16秒前
阿米巴ing发布了新的文献求助10
16秒前
16秒前
sistine发布了新的文献求助10
17秒前
满意书包完成签到 ,获得积分10
17秒前
桐桐应助儒雅的夏山采纳,获得10
18秒前
20秒前
20秒前
大尔多应助123采纳,获得30
20秒前
21秒前
CatLight发布了新的文献求助10
22秒前
研途完成签到,获得积分10
24秒前
24秒前
24秒前
sweet发布了新的文献求助10
25秒前
25秒前
浮游应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
ccm应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627322
求助须知:如何正确求助?哪些是违规求助? 4713442
关于积分的说明 14961739
捐赠科研通 4784344
什么是DOI,文献DOI怎么找? 2554800
邀请新用户注册赠送积分活动 1516307
关于科研通互助平台的介绍 1476657