Adversarial Purification using a Modified Guided Diffusion Model and Adaptive Self-Supervised Training

对抗制 计算机科学 人工智能 稳健性(进化) 机器学习 概率逻辑 深度学习 算法 模式识别(心理学) 生物化学 基因 化学
作者
Davood Zabihzadeh,Hawraa Razzaq Abed Alameer,Seyed Jalaleddin Mousavirad
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ada476
摘要

Abstract As the applications of deep neural networks broaden, enhancing their robustness against adversarial attacks becomes increasingly important. Multiple studies have demonstrated their vulnerability to adversarial perturbations. This paper presents an iterative method employing a probabilistic diffusion model, guided by a self-supervised training strategy, to purify potential adversarial inputs. Specifically, the diffusion process blends the adversarial noise with incrementally added Gaussian noise. Subsequently, both types of noise are removed during the guided denoising process. Unlike existing methods that use a fixed number of iterations and rely on the adversarial input for guidance, our scoring-based approach dynamically adjusts the purification duration for each individual image, thereby reducing computational overhead and minimizing the side effects caused by excessive purification. Additionally, we modify the input at each iteration using a self-supervised strategy and then utilize this modified input to guide the denoising process, resulting in better adversarial robustness. Since the proposed method operates without any label information, it can be applied to various training paradigms, including
supervised, semi-supervised, self-supervised, and unsupervised learning. We conduct several experiments on widely used machine vision datasets to evaluate the efficacy of the proposed method. The results confirm that our method effectively eliminates adversarial perturbations across these datasets. For example, under a white-box PGD attack with an l∞ ball (ε = 8/255) on CIFAR-10, our method
achieves a robust accuracy of 92.13%, surpassing the state-of-the-art by 3.68%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wpy发布了新的文献求助10
刚刚
务实慕山发布了新的文献求助10
1秒前
拉长的娩发布了新的文献求助10
1秒前
1秒前
烂漫的汲完成签到,获得积分10
1秒前
巧克力怪发布了新的文献求助50
2秒前
creNdro发布了新的文献求助10
3秒前
爱听歌傲玉完成签到,获得积分10
3秒前
杭幻丝发布了新的文献求助10
3秒前
DrRayson1208完成签到,获得积分10
4秒前
謦欬与风完成签到,获得积分10
6秒前
YangLi发布了新的文献求助10
6秒前
hsa_ID完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助150
8秒前
8秒前
9秒前
9秒前
huohuo完成签到,获得积分10
10秒前
黄佳慧发布了新的文献求助10
10秒前
斯文败类应助xs采纳,获得10
10秒前
Zxxz发布了新的文献求助10
11秒前
Kim_Hou发布了新的文献求助10
11秒前
英姑应助shimmer采纳,获得10
11秒前
鳗鱼蹇完成签到,获得积分10
12秒前
Cassie发布了新的文献求助10
13秒前
yanliu95发布了新的文献求助10
13秒前
华百川完成签到,获得积分10
14秒前
康琦琦发布了新的文献求助10
14秒前
14秒前
14秒前
在水一方应助杭幻丝采纳,获得10
16秒前
16秒前
17秒前
17秒前
17秒前
孙希熳发布了新的文献求助10
18秒前
19秒前
树林红了完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012268
求助须知:如何正确求助?哪些是违规求助? 4253594
关于积分的说明 13254851
捐赠科研通 4056369
什么是DOI,文献DOI怎么找? 2218666
邀请新用户注册赠送积分活动 1228332
关于科研通互助平台的介绍 1150778