Adversarial Purification using a Modified Guided Diffusion Model and Adaptive Self-Supervised Training

对抗制 计算机科学 人工智能 稳健性(进化) 机器学习 概率逻辑 深度学习 算法 模式识别(心理学) 生物化学 化学 基因
作者
Davood Zabihzadeh,Hawraa Razzaq Abed Alameer,Seyed Jalaleddin Mousavirad
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ada476
摘要

Abstract As the applications of deep neural networks broaden, enhancing their robustness against adversarial attacks becomes increasingly important. Multiple studies have demonstrated their vulnerability to adversarial perturbations. This paper presents an iterative method employing a probabilistic diffusion model, guided by a self-supervised training strategy, to purify potential adversarial inputs. Specifically, the diffusion process blends the adversarial noise with incrementally added Gaussian noise. Subsequently, both types of noise are removed during the guided denoising process. Unlike existing methods that use a fixed number of iterations and rely on the adversarial input for guidance, our scoring-based approach dynamically adjusts the purification duration for each individual image, thereby reducing computational overhead and minimizing the side effects caused by excessive purification. Additionally, we modify the input at each iteration using a self-supervised strategy and then utilize this modified input to guide the denoising process, resulting in better adversarial robustness. Since the proposed method operates without any label information, it can be applied to various training paradigms, including
supervised, semi-supervised, self-supervised, and unsupervised learning. We conduct several experiments on widely used machine vision datasets to evaluate the efficacy of the proposed method. The results confirm that our method effectively eliminates adversarial perturbations across these datasets. For example, under a white-box PGD attack with an l∞ ball (ε = 8/255) on CIFAR-10, our method
achieves a robust accuracy of 92.13%, surpassing the state-of-the-art by 3.68%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助lei采纳,获得10
1秒前
独特雁枫发布了新的文献求助10
2秒前
2秒前
小黑喵应助ljhong1116采纳,获得150
2秒前
2秒前
搜集达人应助郝逍遥采纳,获得10
3秒前
文艺的小海豚完成签到,获得积分10
4秒前
QIN发布了新的文献求助10
5秒前
汉堡包应助神凰采纳,获得10
6秒前
Delight完成签到 ,获得积分10
6秒前
hlc完成签到,获得积分10
8秒前
机智的凡梦完成签到,获得积分10
10秒前
llll发布了新的文献求助20
17秒前
完美世界应助pumpkin采纳,获得30
18秒前
甜晞完成签到,获得积分10
20秒前
21秒前
丘比特应助做最好的自己采纳,获得10
23秒前
pumpkin完成签到,获得积分20
25秒前
瓶子完成签到 ,获得积分10
26秒前
善学以致用应助咕噜咕噜采纳,获得10
26秒前
Orange应助laskxd采纳,获得10
26秒前
聪明的半仙完成签到 ,获得积分10
27秒前
852应助科研通管家采纳,获得10
28秒前
28秒前
ding应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
无花果应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
28秒前
暴躁四叔应助科研通管家采纳,获得30
28秒前
Owen应助科研通管家采纳,获得10
28秒前
28秒前
Akim应助科研通管家采纳,获得10
28秒前
28秒前
29秒前
言辞完成签到,获得积分10
30秒前
独特雁枫完成签到,获得积分10
31秒前
小谷发布了新的文献求助10
34秒前
34秒前
逍遥猪皮完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461239
求助须知:如何正确求助?哪些是违规求助? 3054973
关于积分的说明 9045828
捐赠科研通 2744888
什么是DOI,文献DOI怎么找? 1505722
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233