Acute myeloid leukemia is a malignant hematologic disorder characterized by the excessive proliferation and accumulation of immature myeloid cells. This abnormality disrupts normal hematopoiesis, leading to symptoms such as anemia, increased susceptibility to infections and bleeding. ADP-ribosylation factors (ARFs) are critical in various cellular functions, including vesicular trafficking, membrane dynamics, cytoskeleton organization, signal transduction, endocytosis, exocytosis, and maintaining organelle integrity. Among ARF family members, ARF3 has garnered relatively less attention compared to other members like ARF1 and ARF6, leaving its role less understood. In this study, we found that the higher expression of ARF3 is correlated with poorer prognosis in AML patients. Silencing ARF3 in AML cells interrupted cell cycle progression and promote cell death as well as inhibit leukemogenesis in vivo. Mechanically, ARF3 knockdown suppressed AML progression by inhibiting PI3K/Akt signaling pathway. Our results indicate that ARF3 is linked to poor outcomes in AML patients and can serve as a potential therapeutic target for AML treatment.