A Mamba Foundation Model for Time Series Forecasting

基础(证据) 系列(地层学) 计算机科学 时间序列 地理 地质学 考古 机器学习 古生物学
作者
Haoyu Ma,Yushu Chen,Wenlai Zhao,Jinzhe Yang,Younghun Ji,Xinghua Xu,Xiaozhu Liu,Jing Hao,Shengzhuo Liu,Guangwen Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.02941
摘要

Time series foundation models have demonstrated strong performance in zero-shot learning, making them well-suited for predicting rapidly evolving patterns in real-world applications where relevant training data are scarce. However, most of these models rely on the Transformer architecture, which incurs quadratic complexity as input length increases. To address this, we introduce TSMamba, a linear-complexity foundation model for time series forecasting built on the Mamba architecture. The model captures temporal dependencies through both forward and backward Mamba encoders, achieving high prediction accuracy. To reduce reliance on large datasets and lower training costs, TSMamba employs a two-stage transfer learning process that leverages pretrained Mamba LLMs, allowing effective time series modeling with a moderate training set. In the first stage, the forward and backward backbones are optimized via patch-wise autoregressive prediction; in the second stage, the model trains a prediction head and refines other components for long-term forecasting. While the backbone assumes channel independence to manage varying channel numbers across datasets, a channel-wise compressed attention module is introduced to capture cross-channel dependencies during fine-tuning on specific multivariate datasets. Experiments show that TSMamba's zero-shot performance is comparable to state-of-the-art time series foundation models, despite using significantly less training data. It also achieves competitive or superior full-shot performance compared to task-specific prediction models. The code will be made publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
3秒前
小二郎应助筒筒采纳,获得10
3秒前
爆米花应助坚强幼晴采纳,获得10
5秒前
PHDq发布了新的文献求助10
5秒前
犹豫的忆梅完成签到,获得积分10
5秒前
小马甲应助聪明的天亦采纳,获得10
6秒前
akui发布了新的文献求助10
6秒前
支凝海发布了新的文献求助10
6秒前
7秒前
7秒前
哈哈哈发布了新的文献求助10
8秒前
万能图书馆应助疆男采纳,获得10
8秒前
8秒前
8秒前
9秒前
荣耀发布了新的文献求助10
9秒前
健忘泽洋完成签到,获得积分10
9秒前
10秒前
10秒前
认真土豆发布了新的文献求助10
10秒前
科研通AI5应助外向芫采纳,获得10
11秒前
yj完成签到,获得积分10
11秒前
甜甜剑愁发布了新的文献求助10
11秒前
小郭发布了新的文献求助10
12秒前
XIAOXIAOYANG完成签到,获得积分20
12秒前
breeze完成签到,获得积分10
12秒前
高贵宛海完成签到,获得积分10
12秒前
12秒前
12秒前
Alexander L发布了新的文献求助10
12秒前
魏海龙发布了新的文献求助10
13秒前
帅气忆南发布了新的文献求助10
13秒前
yj发布了新的文献求助10
14秒前
14秒前
14秒前
猫了个喵应助汤谷栽扶桑采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737