Preoperative Prediction of Perineural Invasion in Pancreatic Ductal Adenocarcinoma Using Machine Learning Radiomics Based on Contrast-Enhanced CT Imaging

无线电技术 胰腺导管腺癌 医学 旁侵犯 放射科 对比度(视觉) 腺癌 胰腺癌 癌症 内科学 计算机科学 人工智能
作者
Wenzheng Lu,Yanqi Zhong,Xifeng Yang,Yuxi Ge,Heng Zhang,Xingbiao Chen,Shudong Hu
标识
DOI:10.1007/s10278-024-01325-1
摘要

The objective of the study is to assess the clinical value of machine learning radiomics based on contrast-enhanced computed tomography (CECT) images in preoperative prediction of perineural invasion (PNI) status in pancreatic ductal adenocarcinoma (PDAC). A total of 143 patients with PDAC were enrolled in this retrospective study (training group, n = 100; test group, n = 43). Radiomics features were extracted from CECT images and selected by the Mann-Whitney U-test, Pearson correlation coefficient, and least absolute shrinkage and selection operator (LASSO). The logistic regression (LR), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and decision tree (DT) algorithms were trained to build radiomics models by radiomic features. Multivariate logistic regression was employed to identify independent predictors and establish clinical models. A combined model was constructed by integrating clinical and radiomics features. Model performances were assessed by receiver operating characteristic curves (ROCs) and decision curve analyses (DCAs). A total of 788 radiomics features were extracted from CECT images, of which 14 were identified as significant through the three-step selection process. Among the machine learning models, the SVM radiomics model exhibited the highest predictive performance in the test group, achieving an area under the curve (AUC) of 0.831, accuracy of 0.698, sensitivity of 0.677, and specificity of 0.750. After logistic regression screening, the clinical model was established using carbohydrate antigen 19-9 (CA199) levels as one independent predictor. In the test group, the clinical model demonstrated an AUC of 0.644, accuracy of 0.744, sensitivity of 0.871, and specificity of 0.417. The combined model showed improved performance compared to both the clinical and radiomics models in the test group, with an AUC of 0.844, accuracy of 0.767, sensitivity of 0.806, and specificity of 0.667. Subsequently, DCA of the combined model indicated optimal clinical value for predicting PNI status. Machine learning radiomics models can accurately predict PNI status in patients with pancreatic ductal adenocarcinoma. The combined model, which incorporates clinical and radiomics features, enhances preoperative diagnostic performance and aids in the selection of treatment methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张才豪发布了新的文献求助10
刚刚
1秒前
听海发布了新的文献求助10
1秒前
SYLH应助StevenZhao采纳,获得10
1秒前
白攸远发布了新的文献求助10
2秒前
bbb关闭了bbb文献求助
3秒前
3秒前
科研通AI5应助韶安萱采纳,获得10
5秒前
Hakunamatata完成签到 ,获得积分10
6秒前
6秒前
6秒前
传奇3应助笑笑采纳,获得10
6秒前
6秒前
7秒前
shi发布了新的文献求助10
8秒前
9秒前
hhh关闭了hhh文献求助
9秒前
LIGNET完成签到,获得积分10
10秒前
无期发布了新的文献求助10
10秒前
共享精神应助阔达蓝血采纳,获得10
10秒前
10秒前
黎明发布了新的文献求助10
12秒前
12秒前
YOLO完成签到 ,获得积分10
12秒前
科研通AI2S应助wxyllxx采纳,获得10
12秒前
13秒前
辛勤的手机完成签到,获得积分10
13秒前
小蘑菇应助鉴湖采纳,获得10
13秒前
李爱国应助nbzhan采纳,获得10
13秒前
迟迟发布了新的文献求助10
13秒前
FIN应助吉幻柏采纳,获得10
14秒前
14秒前
嘿嘿发布了新的文献求助10
15秒前
15秒前
听海完成签到,获得积分10
15秒前
Owen应助wxfacai采纳,获得10
16秒前
Jasper发布了新的文献求助10
16秒前
17秒前
Jerry给Jerry的求助进行了留言
17秒前
小蘑菇应助南有乔木采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669