Abnormal Sound Detection of Wind Turbine Gearboxes Based on Improved MobileFaceNet and Feature Fusion

涡轮机 计算机科学 声音(地理) 声学 工程类 航空航天工程 物理
作者
Yujie Liang,Haorui Liu,Yayu Chen
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 11226-11226
标识
DOI:10.3390/app142311226
摘要

To solve problems such as the unstable detection performance of the sound anomaly detection of wind turbine gearboxes when only normal data are used for training, and the poor detection performance caused by the poor classification of samples with high similarity, this paper proposes a self-supervised wind turbine gearbox sound anomaly detection algorithm that fuses time-domain features and Mel spectrograms, improves the MobileFaceNet (MFN) model, and combines the Gaussian Mixture Model (GMM). This method compensates for the abnormal information lost in Mel spectrogram features through feature fusion and introduces a style attention mechanism (SRM) in MFN to enhance the expression of features, improving the accuracy and stability of the abnormal sound detection model. For the wind turbine gearbox sound dataset of a certain wind farm in Guangyuan, the average AUC of the sound data at five measuring point positions of the wind turbine gearbox using the method proposed in this paper, STgram-MFN-SRM, reached 96.16%. Compared with the traditional anomaly detection methods LogMel-MFN, STgram-MFN, STgram-Resnet50, and STgram-MFN-SRM(CE), the average AUC of sound detection at the five measuring point positions increased by 5.19%, 4.73%, 11.06%, and 2.88%, respectively. Therefore, the method proposed in this paper effectively improves the performance of the sound anomaly detection model of wind turbine gearboxes and has important engineering value for the healthy operation and maintenance of wind turbines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI2S应助lyx采纳,获得10
2秒前
Zoe013发布了新的文献求助10
3秒前
企鹅完成签到,获得积分20
4秒前
4秒前
4秒前
天神发布了新的文献求助10
5秒前
5秒前
naturehome完成签到,获得积分10
5秒前
6秒前
顺利滑板发布了新的文献求助10
6秒前
9秒前
10秒前
小蓝发布了新的文献求助10
10秒前
科研通AI5应助allen7u采纳,获得10
10秒前
完美世界应助单薄二娘采纳,获得10
10秒前
冯俊驰发布了新的文献求助10
10秒前
10秒前
李健应助zhangjianan采纳,获得10
10秒前
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得30
12秒前
乐乐应助科研通管家采纳,获得30
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
wswswsws应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
周鑫喆完成签到 ,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得30
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
加菲丰丰应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
大模型应助yeandpeng采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408