Effect of leading-edge cavitation of a hydrofoil on the near-field sound pressure

空化 声压 压缩性 物理 声学 涡流 前沿 机械 噪音(视频) 人工智能 计算机科学 图像(数学)
作者
Zhaohui Qian,Yongshun Zeng,Zhifeng Yao,Qin Wu,Xianwu Luo
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0248931
摘要

Leading-edge (LE) cavitation of a blade is a frequent occurrence in hydraulic machinery during off-design operation, often accompanied by unsteady flow and high-amplitude noise. To quantitatively assess the noise caused by cavitation, the Powell vortex sound theory was refined to consider the non-uniform distribution of sound speed and the compressibility effect resulting from mass transfer near the vapor–liquid interface. This led to the development of a new model capable of visualizing the spatiotemporal distribution of sound pressure in cavitating flows. Unsteady simulations were conducted on a hydrofoil at various cavitation numbers and were validated using experimental data. Three different types of sound sources were identified: unbalanced vortex force, non-uniform kinetic energy, and compressibility effect, with the compressibility effect being the dominant source under LE cavitation conditions. The sound pressure during cavitation exhibited dramatic fluctuations over time and was closely related to the spatial position, particularly peaking during the transient moments of LE cavitation break-off, with the highest sound pressure observed near the vapor–liquid interface. There was a strong correlation between sound pressure and vapor volume fraction, suggesting that cavitation noise is a result of the dynamic evolution of cavitation. As the cavitation number decreased from 2.02 to 1.04, the sound pressure level substantially increased, with an increment of up to 17 dB. This paper presents a method for simulating and visualizing near-field sound pressure considering cavitation, providing valuable insights into the relationship between LE cavitation and sound pressure levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白金发布了新的文献求助10
刚刚
ma15homes完成签到,获得积分10
刚刚
英俊的铭应助yu采纳,获得10
刚刚
浮浮世世应助Magali采纳,获得30
1秒前
江河发布了新的文献求助10
1秒前
今后应助李子怡采纳,获得10
3秒前
wanci应助如飘瑞雪采纳,获得10
3秒前
4秒前
科研通AI40应助浩洁采纳,获得10
4秒前
gppdwyyx发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
王哈哈完成签到,获得积分10
8秒前
Lucas应助feiyang采纳,获得10
8秒前
CipherSage应助jie采纳,获得10
8秒前
hajy完成签到 ,获得积分10
8秒前
8秒前
Maxine完成签到 ,获得积分10
9秒前
zcm发布了新的文献求助10
10秒前
10秒前
细心信封完成签到,获得积分10
10秒前
zhangh65发布了新的文献求助10
10秒前
11秒前
Trajan发布了新的文献求助10
11秒前
yu发布了新的文献求助10
12秒前
13秒前
13秒前
李小刀完成签到,获得积分10
13秒前
爆米花应助ywj采纳,获得10
14秒前
美满囧发布了新的文献求助10
14秒前
15秒前
hjy发布了新的文献求助20
15秒前
15秒前
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470867
求助须知:如何正确求助?哪些是违规求助? 3063891
关于积分的说明 9086062
捐赠科研通 2754378
什么是DOI,文献DOI怎么找? 1511397
邀请新用户注册赠送积分活动 698409
科研通“疑难数据库(出版商)”最低求助积分说明 698272