超临界流体
甲醇
超临界流体色谱法
部分
色谱法
加合物
活性成分
化学
组合化学
高效液相色谱法
有机化学
生物
生物信息学
作者
Brian Lingfeng He,Xuejun Xu,Liang Li
标识
DOI:10.1021/acs.oprd.4c00448
摘要
BMS-986409 is a novel ligand-directed degrader of the androgen receptor developed by Bristol Myers Squibb Company for the treatment of metastable castration-resistant prostate cancer (mCRPC). The active pharmaceutical ingredient (API) has an (R,R) configuration and three minor stereoisomers, including (R,S), (S,R), and (S,S) isomers. During pharmaceutical formulation development, methanol adducts were found in spray-dried dispersion (SDD) materials at alarming levels. To investigate the formation mechanism of methanol adducts, we successfully developed an ultrahigh performance liquid chromatography achiral method and a supercritical fluid chromatography chiral method to separate all potential methanol adducts and stereoisomers of BMS-986409. It is concluded that ring-opening at the 2-position of the gluarimide moiety (Pathway 1) is the favored formation mechanism of methanol adducts during the BMS-986409 SDD manufacturing process and epimerization can be neglected. However, under basic conditions, ring-opening at the 6-position of the gluarimide moiety (Pathway 2) becomes dominant and, in the meantime, epimerization is promoted to a great extent. The knowledge collected by leveraging the SFC chiral method gives us the needed confidence in the analytical impurity control strategy that solely relies on the achiral method for monitoring methanol adduct impurities in SDD materials and sample release in future pharmaceutical development.
科研通智能强力驱动
Strongly Powered by AbleSci AI