电池(电)
材料科学
内阻
计算机科学
可靠性(半导体)
健康状况
荷电状态
石墨
数码产品
汽车工程
电气工程
物理
复合材料
工程类
功率(物理)
量子力学
作者
Annabel Olgo,Sylvie Géniès,Romain Franchi,Cédric Septet,Quentin Jacquet,Quentin Berrod,Rasmus Palm,Pascale Chenevier,Elise Villemin,Claire Villevieille,Nils Blanc,Samuel Tardif,Olivier Raccurt,Sandrine Lyonnard
标识
DOI:10.1038/s41467-024-54656-6
摘要
Smart batteries, i.e., equipped with internal and external sensors, are emerging as promising solutions to enhance battery state of health and optimize operating conditions. However, for accurate correlations between the evolution of the cell parameters (e.g., temperature, strain) and physicochemical degradation mechanisms, it is crucial to know the reliability of sensors. To address this question, we perform a synchrotron operando X-ray diffraction experiment to investigate the local and global impact of the presence of internal sensors on a commercial prismatic Li-ion battery cell at various (dis)charge rates. We find that, while the overall electrochemical performance is unaffected, the sensors have a substantial impact on the local graphite lithiation kinetics, especially at high (dis)charge rates. These results show the importance of controlling local deformations induced by internal sensors and tailoring the dimensions of these sensors to obtain reliable battery performance indicators and optimize smart batteries. Batteries equipped with sensors are promising to optimize usage and lifetime. Here, the authors show that an internal optical fiber induces delayed graphite reaction kinetics and conclude that a bulky intrusive sensor might measure a local disrupted behavior rather than the true battery state.
科研通智能强力驱动
Strongly Powered by AbleSci AI