Expanding the frontiers of electrocatalysis: advanced theoretical methods for water splitting

电催化剂 分解水 析氧 密度泛函理论 催化作用 纳米技术 计算机科学 生化工程 材料科学 化学 电化学 计算化学 物理化学 工程类 电极 生物化学 光催化
作者
Seong Chan Cho,Jun Ho Seok,Hung Ngo Manh,Jae Hun Seol,Chi H. Lee,Sang Uck Lee
出处
期刊:Nano Convergence [Springer Nature]
卷期号:12 (1)
标识
DOI:10.1186/s40580-024-00467-w
摘要

Abstract Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER. We begin by exploring DFT-based approaches for evaluating catalytic activity under both acidic and alkaline conditions. The review then shifts to a material-oriented perspective, showcasing key catalyst materials and the theoretical strategies employed to enhance their performance. In addition, we discuss scaling relationships that exist between binding energies and electronic structures through the use of charge-density analysis and d -band theory. Advanced concepts, such as the effects of adsorbate coverage, solvation, and applied potential on catalytic behavior, are also discussed. We finally focus on integrating machine learning (ML) with DFT to enable high-throughput screening and accelerate the discovery of novel water-splitting catalysts. This comprehensive review underscores the pivotal role that DFT plays in advancing electrocatalyst design and highlights its potential for shaping the future of sustainable hydrogen production. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
代何发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
。。。完成签到,获得积分10
2秒前
qii发布了新的文献求助10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Patty发布了新的文献求助10
2秒前
Duang发布了新的文献求助10
3秒前
DY发布了新的文献求助10
3秒前
一念初见发布了新的文献求助10
4秒前
俭朴天蓝发布了新的文献求助10
4秒前
Yee.发布了新的文献求助10
4秒前
Fiona发布了新的文献求助10
5秒前
田様应助白夜采纳,获得10
6秒前
泥鳅发布了新的文献求助10
6秒前
Dara完成签到,获得积分10
6秒前
SciGPT应助飞龙采纳,获得10
8秒前
落寞依珊应助yeah采纳,获得10
10秒前
自由念露发布了新的文献求助10
11秒前
11秒前
haoliangshi发布了新的文献求助10
12秒前
李健的小迷弟应助DY采纳,获得10
13秒前
向往发布了新的文献求助10
13秒前
14秒前
潇潇微雨发布了新的文献求助10
15秒前
江思瑜发布了新的文献求助10
16秒前
个性的秦昊帅完成签到 ,获得积分20
19秒前
19秒前
上官若男应助LANER采纳,获得10
19秒前
20秒前
SXYYY完成签到,获得积分10
22秒前
Liu发布了新的文献求助10
24秒前
科研通AI5应助haoliangshi采纳,获得10
24秒前
能力越小责任越小完成签到,获得积分10
24秒前
QHQ应助柠檬精翠翠采纳,获得10
24秒前
25秒前
今后应助小白小王采纳,获得10
25秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475940
求助须知:如何正确求助?哪些是违规求助? 3067572
关于积分的说明 9104917
捐赠科研通 2759160
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204