Optimizing Data Driven Recruitment Strategies in a Disruptive Era Through Digital Workload Analysis

工作量 计算机科学 数据科学 操作系统
作者
Sri Handayani,Ratna Dewi Kusumaningtyas,Danang Wahyu Wicaksono,Novita Eka Putri,C. Triasnita
标识
DOI:10.2118/222976-ms
摘要

Summary To emerge as a leading global energy company, an agile structure that facilitates business acceleration and operational excellence is necessary. However, following a recent subholding restructuring, the organization faces a 23% vacancy rate. This situation is compounded by the dynamic business landscape, which makes additional challenges to recruiting efforts. To address these issues and ensure an effective recruitment strategy to maintain productivity while adapting to the changes, a comprehensive organizational evaluation and processes is essential. A digitalized Workload Analysis (WLA) application was implemented to comprehensively assess staffing needs of 6,200 positions across the organization, including structural and contracted positions. This approach addressed limitations of conventional WLA methods such as data validity and extended timeline. Pre-filled questionnaires based on standardized job descriptions ensured data accuracy, and sharing sessions for high-level management, Subject Matter Experts (SMEs), and all respondents, further enhanced completion quality. Additionally, technical guidance and support were offered in various forms, including online/offline assistance, instructional videos, and interactive communication channels. This streamlined WLA process was completed within two months. The analysis resulted in some critical insights: among the 23% vacancy rate, 15% were identified as high-priority roles within core operational teams. Another 3% could be eliminated, while recruitment for another 5% could be deferred based on anticipated business developments. These findings informed targeted recruitment strategies, timelines, and resource allocation, ensuring efficient workforce management. Emphasizing a data-driven approach, it optimizes the recruitment process and identifies opportunities to enhance efficiency by eliminating redundant positions, supporting the company to swiftly adapt to evolving talent demands and ensuring readiness in the dynamic business landscape.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoe发布了新的文献求助10
1秒前
ikun发布了新的文献求助10
1秒前
hey应助All采纳,获得20
1秒前
王涵应助wuludie采纳,获得10
2秒前
科研通AI6应助快乐小青蛙采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
乐乐应助Du采纳,获得10
4秒前
xaio发布了新的文献求助10
5秒前
今后应助哈哈哈采纳,获得10
5秒前
向日葵1完成签到,获得积分10
5秒前
5秒前
XY发布了新的文献求助10
5秒前
6秒前
JamesPei应助JEK采纳,获得10
6秒前
科研通AI6应助嘎嘎采纳,获得10
7秒前
迅速海云完成签到,获得积分10
7秒前
yy完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
dai发布了新的文献求助10
9秒前
今后应助Mercy采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
koori完成签到,获得积分10
10秒前
天天周六完成签到,获得积分10
11秒前
SciGPT应助liningyao采纳,获得30
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609676
求助须知:如何正确求助?哪些是违规求助? 4694236
关于积分的说明 14881785
捐赠科研通 4720035
什么是DOI,文献DOI怎么找? 2544827
邀请新用户注册赠送积分活动 1509694
关于科研通互助平台的介绍 1472981