已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing Data Driven Recruitment Strategies in a Disruptive Era Through Digital Workload Analysis

工作量 计算机科学 数据科学 操作系统
作者
Sri Handayani,Ratna Dewi Kusumaningtyas,Danang Wahyu Wicaksono,Novita Eka Putri,C. Triasnita
标识
DOI:10.2118/222976-ms
摘要

Summary To emerge as a leading global energy company, an agile structure that facilitates business acceleration and operational excellence is necessary. However, following a recent subholding restructuring, the organization faces a 23% vacancy rate. This situation is compounded by the dynamic business landscape, which makes additional challenges to recruiting efforts. To address these issues and ensure an effective recruitment strategy to maintain productivity while adapting to the changes, a comprehensive organizational evaluation and processes is essential. A digitalized Workload Analysis (WLA) application was implemented to comprehensively assess staffing needs of 6,200 positions across the organization, including structural and contracted positions. This approach addressed limitations of conventional WLA methods such as data validity and extended timeline. Pre-filled questionnaires based on standardized job descriptions ensured data accuracy, and sharing sessions for high-level management, Subject Matter Experts (SMEs), and all respondents, further enhanced completion quality. Additionally, technical guidance and support were offered in various forms, including online/offline assistance, instructional videos, and interactive communication channels. This streamlined WLA process was completed within two months. The analysis resulted in some critical insights: among the 23% vacancy rate, 15% were identified as high-priority roles within core operational teams. Another 3% could be eliminated, while recruitment for another 5% could be deferred based on anticipated business developments. These findings informed targeted recruitment strategies, timelines, and resource allocation, ensuring efficient workforce management. Emphasizing a data-driven approach, it optimizes the recruitment process and identifies opportunities to enhance efficiency by eliminating redundant positions, supporting the company to swiftly adapt to evolving talent demands and ensuring readiness in the dynamic business landscape.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的威完成签到,获得积分10
3秒前
3秒前
佳妹儿发布了新的文献求助10
4秒前
歪锥锥发布了新的文献求助10
4秒前
初次完成签到 ,获得积分10
4秒前
张东方完成签到,获得积分20
11秒前
13秒前
13秒前
小居很哇塞完成签到,获得积分10
15秒前
孤独的涵柳完成签到 ,获得积分10
16秒前
沉静元瑶发布了新的文献求助30
16秒前
16秒前
木子李发布了新的文献求助10
19秒前
Owen应助CJN采纳,获得10
19秒前
顺鑫发布了新的文献求助10
20秒前
汪汪队发布了新的文献求助10
21秒前
Xu完成签到 ,获得积分10
22秒前
nanananan发布了新的文献求助10
22秒前
隐形曼青应助张东方采纳,获得10
23秒前
WHY完成签到 ,获得积分10
29秒前
mmmm完成签到,获得积分10
29秒前
29秒前
30秒前
科研通AI2S应助cc采纳,获得10
31秒前
心海完成签到,获得积分20
34秒前
CJN发布了新的文献求助10
34秒前
Jasper应助13654135090采纳,获得10
35秒前
35秒前
美丽的依琴完成签到,获得积分10
37秒前
心海发布了新的文献求助10
38秒前
rengar完成签到,获得积分10
38秒前
幽幽发布了新的文献求助10
40秒前
42秒前
piglet发布了新的文献求助10
44秒前
45秒前
无敌小宽哥完成签到,获得积分10
46秒前
50秒前
科目三应助芳芳采纳,获得10
50秒前
眯眯眼的宛白完成签到,获得积分10
50秒前
hh发布了新的文献求助10
52秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207499
求助须知:如何正确求助?哪些是违规求助? 2856898
关于积分的说明 8107608
捐赠科研通 2522379
什么是DOI,文献DOI怎么找? 1355488
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613522