Optimizing Data Driven Recruitment Strategies in a Disruptive Era Through Digital Workload Analysis

工作量 计算机科学 数据科学 操作系统
作者
Sri Handayani,Ratna Dewi Kusumaningtyas,Danang Wahyu Wicaksono,Novita Eka Putri,C. Triasnita
标识
DOI:10.2118/222976-ms
摘要

Summary To emerge as a leading global energy company, an agile structure that facilitates business acceleration and operational excellence is necessary. However, following a recent subholding restructuring, the organization faces a 23% vacancy rate. This situation is compounded by the dynamic business landscape, which makes additional challenges to recruiting efforts. To address these issues and ensure an effective recruitment strategy to maintain productivity while adapting to the changes, a comprehensive organizational evaluation and processes is essential. A digitalized Workload Analysis (WLA) application was implemented to comprehensively assess staffing needs of 6,200 positions across the organization, including structural and contracted positions. This approach addressed limitations of conventional WLA methods such as data validity and extended timeline. Pre-filled questionnaires based on standardized job descriptions ensured data accuracy, and sharing sessions for high-level management, Subject Matter Experts (SMEs), and all respondents, further enhanced completion quality. Additionally, technical guidance and support were offered in various forms, including online/offline assistance, instructional videos, and interactive communication channels. This streamlined WLA process was completed within two months. The analysis resulted in some critical insights: among the 23% vacancy rate, 15% were identified as high-priority roles within core operational teams. Another 3% could be eliminated, while recruitment for another 5% could be deferred based on anticipated business developments. These findings informed targeted recruitment strategies, timelines, and resource allocation, ensuring efficient workforce management. Emphasizing a data-driven approach, it optimizes the recruitment process and identifies opportunities to enhance efficiency by eliminating redundant positions, supporting the company to swiftly adapt to evolving talent demands and ensuring readiness in the dynamic business landscape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助风清扬采纳,获得10
3秒前
打打应助风清扬采纳,获得10
3秒前
3秒前
sc发布了新的文献求助10
3秒前
3秒前
5秒前
wyg1994发布了新的文献求助10
7秒前
8秒前
8秒前
领导范儿应助形随将至采纳,获得10
9秒前
10秒前
水心完成签到 ,获得积分10
11秒前
12秒前
许思真完成签到,获得积分10
12秒前
谦谦神棍发布了新的文献求助10
14秒前
药学小团子完成签到 ,获得积分10
15秒前
leehong发布了新的文献求助10
15秒前
asdlxz发布了新的文献求助10
16秒前
Joshua完成签到,获得积分0
17秒前
土土完成签到,获得积分10
17秒前
by完成签到,获得积分10
17秒前
鲤角兽发布了新的文献求助10
18秒前
wanci应助hope采纳,获得10
19秒前
20秒前
21秒前
形随将至发布了新的文献求助10
26秒前
善学以致用应助wdy337采纳,获得10
28秒前
zzz完成签到 ,获得积分10
28秒前
完美世界应助鲤角兽采纳,获得10
30秒前
leehong完成签到,获得积分20
30秒前
直率的宛海完成签到,获得积分10
31秒前
asdlxz完成签到,获得积分20
31秒前
翻斗花园爆破手小胡完成签到,获得积分10
33秒前
Zu发布了新的文献求助10
34秒前
35秒前
受伤的严青完成签到 ,获得积分10
36秒前
37秒前
橙子完成签到 ,获得积分10
37秒前
39秒前
Bacon发布了新的文献求助10
40秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457592
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292461
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458659
邀请新用户注册赠送积分活动 1448644
关于科研通互助平台的介绍 1424323