scGSDR: Harnessing Gene Semantics for Single-Cell Pharmacological Profiling

仿形(计算机编程) 计算生物学 基因 计算机科学 语义学(计算机科学) 生物 遗传学 程序设计语言
作者
Yu‐An Huang,Xiyue Cao,Zhu‐Hong You,Yue-Chao Li,Xuequn Shang,Zhi-An Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.01689
摘要

The rise of single-cell sequencing technologies has revolutionized the exploration of drug resistance, revealing the crucial role of cellular heterogeneity in advancing precision medicine. By building computational models from existing single-cell drug response data, we can rapidly annotate cellular responses to drugs in subsequent trials. To this end, we developed scGSDR, a model that integrates two computational pipelines grounded in the knowledge of cellular states and gene signaling pathways, both essential for understanding biological gene semantics. scGSDR enhances predictive performance by incorporating gene semantics and employs an interpretability module to identify key pathways contributing to drug resistance phenotypes. Our extensive validation, which included 16 experiments covering 11 drugs, demonstrates scGSDR's superior predictive accuracy, when trained with either bulk-seq or scRNA-seq data, achieving high AUROC, AUPR, and F1 Scores. The model's application has extended from single-drug predictions to scenarios involving drug combinations. Leveraging pathways of known drug target genes, we found that scGSDR's cell-pathway attention scores are biologically interpretable, which helped us identify other potential drug-related genes. Literature review of top-ranking genes in our predictions such as BCL2, CCND1, the AKT family, and PIK3CA for PLX4720; and ICAM1, VCAM1, NFKB1, NFKBIA, and RAC1 for Paclitaxel confirmed their relevance. In conclusion, scGSDR, by incorporating gene semantics, enhances predictive modeling of cellular responses to diverse drugs, proving invaluable for scenarios involving both single drug and combination therapies and effectively identifying key resistance-related pathways, thus advancing precision medicine and targeted therapy development.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
来个肉盒子完成签到 ,获得积分10
1秒前
Jing发布了新的文献求助10
2秒前
Mic应助流年采纳,获得10
2秒前
dhzlzz发布了新的文献求助10
3秒前
5秒前
5秒前
歌子发布了新的文献求助10
5秒前
科研人完成签到,获得积分10
6秒前
7秒前
NiuNiu发布了新的文献求助10
7秒前
8秒前
wanna发布了新的文献求助10
9秒前
小小小姑娘完成签到,获得积分10
9秒前
10秒前
11秒前
科研通AI6.2应助maomao采纳,获得10
13秒前
叮咚铛发布了新的文献求助10
13秒前
沈清酌应助wanna采纳,获得10
13秒前
盐汽水完成签到 ,获得积分10
14秒前
zry发布了新的文献求助10
16秒前
旭旭发布了新的文献求助30
18秒前
悦耳的曼安完成签到,获得积分10
20秒前
柯英钊完成签到,获得积分10
20秒前
嘻嘻完成签到,获得积分10
21秒前
科研的豪哥完成签到 ,获得积分10
21秒前
芙芙完成签到,获得积分10
27秒前
27秒前
yuyu应助清爽的大树采纳,获得10
29秒前
29秒前
szcx发布了新的文献求助30
30秒前
嘿嘿应助科研通管家采纳,获得10
31秒前
嘿嘿应助科研通管家采纳,获得10
31秒前
在水一方应助科研通管家采纳,获得30
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
不二发布了新的文献求助10
32秒前
深情的伟宸完成签到,获得积分10
40秒前
40秒前
stiger应助恶恶么v采纳,获得10
40秒前
lml完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868286
求助须知:如何正确求助?哪些是违规求助? 6440170
关于积分的说明 15658070
捐赠科研通 4983705
什么是DOI,文献DOI怎么找? 2687600
邀请新用户注册赠送积分活动 1630250
关于科研通互助平台的介绍 1588363