scGSDR: Harnessing Gene Semantics for Single-Cell Pharmacological Profiling

仿形(计算机编程) 计算生物学 基因 计算机科学 语义学(计算机科学) 生物 遗传学 程序设计语言
作者
Yu‐An Huang,Xiyue Cao,Zhu‐Hong You,Yue-Chao Li,Xuequn Shang,Zhi-An Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.01689
摘要

The rise of single-cell sequencing technologies has revolutionized the exploration of drug resistance, revealing the crucial role of cellular heterogeneity in advancing precision medicine. By building computational models from existing single-cell drug response data, we can rapidly annotate cellular responses to drugs in subsequent trials. To this end, we developed scGSDR, a model that integrates two computational pipelines grounded in the knowledge of cellular states and gene signaling pathways, both essential for understanding biological gene semantics. scGSDR enhances predictive performance by incorporating gene semantics and employs an interpretability module to identify key pathways contributing to drug resistance phenotypes. Our extensive validation, which included 16 experiments covering 11 drugs, demonstrates scGSDR's superior predictive accuracy, when trained with either bulk-seq or scRNA-seq data, achieving high AUROC, AUPR, and F1 Scores. The model's application has extended from single-drug predictions to scenarios involving drug combinations. Leveraging pathways of known drug target genes, we found that scGSDR's cell-pathway attention scores are biologically interpretable, which helped us identify other potential drug-related genes. Literature review of top-ranking genes in our predictions such as BCL2, CCND1, the AKT family, and PIK3CA for PLX4720; and ICAM1, VCAM1, NFKB1, NFKBIA, and RAC1 for Paclitaxel confirmed their relevance. In conclusion, scGSDR, by incorporating gene semantics, enhances predictive modeling of cellular responses to diverse drugs, proving invaluable for scenarios involving both single drug and combination therapies and effectively identifying key resistance-related pathways, thus advancing precision medicine and targeted therapy development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
石榴发布了新的文献求助10
1秒前
Rachel发布了新的文献求助10
1秒前
板栗子完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
顺心的卿完成签到,获得积分20
3秒前
打打应助复杂的新柔采纳,获得10
3秒前
4秒前
曾经书本发布了新的文献求助10
4秒前
Orange应助文文采纳,获得10
4秒前
4秒前
zzz完成签到,获得积分20
4秒前
5秒前
科研通AI5应助SCI采纳,获得10
5秒前
CodeCraft应助兴奋芷采纳,获得10
7秒前
7秒前
mauve完成签到 ,获得积分10
7秒前
板栗子发布了新的文献求助10
7秒前
jor666完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
长安发布了新的文献求助10
11秒前
11秒前
12秒前
充电宝应助潇洒小甜瓜采纳,获得10
12秒前
Crisp发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
CodeCraft应助玩命的谷槐采纳,获得10
14秒前
七七完成签到,获得积分10
15秒前
温暖的青荷完成签到,获得积分20
15秒前
TuTu发布了新的文献求助10
15秒前
整齐的雁玉完成签到,获得积分20
15秒前
俭朴梦菡完成签到,获得积分10
15秒前
曾经书本完成签到,获得积分10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757090
求助须知:如何正确求助?哪些是违规求助? 3300403
关于积分的说明 10113496
捐赠科研通 3014854
什么是DOI,文献DOI怎么找? 1655754
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753565