催化作用
材料科学
电子转移
活动站点
纳米技术
过渡金属
密度泛函理论
化学物理
组合化学
化学
光化学
计算化学
有机化学
作者
Haoran Shen,Shi‐Zhang Chen,Sung‐Kwan Mo,Haoliang Huang,Hongzhi Liang,Jiahao Zhang,Zhenlin Xu,Weipeng Liu,Yingju Liu
标识
DOI:10.1002/adfm.202418360
摘要
Abstract Proximity‐orientation effects (POE) are essential for enzymes, as the spatial arrangement and orientation of catalytic sites strongly influence substrate binding and enhance catalysis. However, nanozymes often face limitations due to weak POE arising from uniform catalytic interfaces. Herein, Co atoms are incorporated into the lattice of Pt‐based nanozymes, exploiting differences in electron configuration and atomic radius between transition metals and noble metals. This integration induced lattice distortion formed new catalytic sites, and restricted the transport path, thereby enhancing the POE. Such transition metal‐doped alloy nanozyme (TANzyme) can be functioned as a self‐cascading nanozyme with artificial catalase‐oxidase activity. Density functional theory calculations demonstrated that the Pt site selectively decomposed H 2 O 2 into H 2 O and O 2 , while the Co site specifically adsorbed O 2 and conversed into superoxide anions, so an oxygen transfer path to connect dual‐active centers not only increased the POE but also improved catalytic specificity. Additionally, by leveraging the efficient catalytic property of TANzyme, a visual origami‐based sensing strategy is developed for the cascade detection of H 2 O 2 , nucleic acids, and marine toxins. This strategy highlighted the pivotal role of POE in enhancing the catalytic specificity of nanozymes, mimicking natural POE in enzymes, and providing a solution to design next‐generation nanozymes.
科研通智能强力驱动
Strongly Powered by AbleSci AI