Bionic Olfactory Neuron with In‐Sensor Reservoir Computing for Intelligent Gas Recognition

气味 嗅觉系统 计算机科学 材料科学 瓶颈 架空(工程) 人工智能 嗅觉感受器 模式识别(心理学) 纳米技术 生物系统 嵌入式系统 神经科学 生物 操作系统
作者
Xiaosong Wu,Shuhui Shi,Jingyan Jiang,Lin DengWei,Jian Song,Zhongrui Wang,Weiguo Huang
出处
期刊:Advanced Materials [Wiley]
被引量:1
标识
DOI:10.1002/adma.202419159
摘要

Gas sensing and recognition are closely related to the sustainable development of human society, current electronic noses (e-noses) typically focus on detecting specific gases, with only a few capable of recognizing complex odor mixtures. Further, these sensors often struggle to distinguish between isomers and homologs, as these compounds usually have similar physical and chemical properties, yielding nearly identical sensor responses. Even the mammalian olfactory systems consisting of a large variety of receptor cells and efficient neuron networks sometimes fail in this task. The bottleneck stems from the inability to extract the fingerprints of these compounds and the inefficiency of signal processing. To address these limitations, a material-device-algorithm co-design strategy is proposed that integrates an organic field-effect transistor (OFET) array with in-sensor reservoir computing (RC) and the k-nearest neighbors (KNN) algorithm. Organic semiconductors diversify responses to different gases, while RC efficiently extracts spatiotemporal features with lower training costs and reduced energy overhead. This synergy achieves 100% classification accuracy for eight gases and 99.04% accuracy for a library of 26 gases, including mixtures, isomers, and homologs-among the highest reported accuracies. This work provides a groundbreaking hardware solution for bionic olfactory neurons with edge artificial intelligence (AI) functions, surpassing traditional e-noses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaomili完成签到,获得积分10
1秒前
3秒前
3秒前
医者发布了新的文献求助10
3秒前
5秒前
驰驰发布了新的文献求助10
6秒前
筱雪筱雪呀完成签到,获得积分10
6秒前
封典发布了新的文献求助10
9秒前
9秒前
10秒前
斯文败类应助dio采纳,获得10
11秒前
pluto应助其老板采纳,获得10
13秒前
liyuna0910发布了新的文献求助30
13秒前
Delia完成签到 ,获得积分10
13秒前
14秒前
无花果应助18183389686采纳,获得10
14秒前
梦华完成签到 ,获得积分10
14秒前
若雪成依完成签到 ,获得积分10
14秒前
14秒前
15秒前
哈哈哈发布了新的文献求助10
15秒前
15秒前
香蕉擎完成签到,获得积分10
15秒前
悦铭完成签到,获得积分10
15秒前
scuter发布了新的文献求助10
16秒前
脑洞疼应助梁三柏采纳,获得10
16秒前
16秒前
18秒前
dio完成签到,获得积分10
18秒前
18秒前
美好莹芝完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
田様应助zzzsh采纳,获得10
19秒前
小马甲应助青阳采纳,获得10
19秒前
A宇发布了新的文献求助10
20秒前
20秒前
20秒前
phl发布了新的文献求助10
20秒前
cy发布了新的文献求助10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794