Large-eddy simulation-based shape optimization for mitigating turbulent wakes of a bluff body using the regularized ensemble Kalman method

唤醒 湍流 大涡模拟 物理 形状优化 机械 统计物理学 有限元法 热力学
作者
Xinlei Zhang,Fengshun Zhang,Zhaobin Li,Xiaolei Yang,Guowei He
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1001
标识
DOI:10.1017/jfm.2024.1090
摘要

In this work, the shape of a bluff body is optimized to mitigate velocity fluctuations of turbulent wake flows based on large-eddy simulations (LES). The Reynolds-averaged Navier–Stokes method fails to capture velocity fluctuations, while direct numerical simulations are computationally prohibitive. This necessitates using the LES method for shape optimization given its scale-resolving capability and relatively affordable computational cost. However, using LES for optimization faces challenges in sensitivity estimation as the chaotic nature of turbulent flows can lead to the blowup of the conventional adjoint-based gradient. Here, we propose using the regularized ensemble Kalman method for the LES-based optimization. The method is a statistical optimization approach that uses the sample covariance between geometric parameters and LES predictions to estimate the model gradient, circumventing the blowup issue of the adjoint method for chaotic systems. Moreover, the method allows for the imposition of smoothness constraints with one additional regularization step. The ensemble-based gradient is first evaluated for the Lorenz system, demonstrating its accuracy in the gradient calculation of the chaotic problem. Further, with the proposed method, the cylinder is optimized to be an asymmetric oval, which significantly reduces turbulent kinetic energy and meander amplitudes in the wake flows. The spectral analysis methods are used to characterize the flow field around the optimized shape, identifying large-scale flow structures responsible for the reduction in velocity fluctuations. Furthermore, it is found that the velocity difference in the shear layer is decreased with the shape change, which alleviates the Kelvin–Helmholtz instability and the wake meandering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就梦松完成签到,获得积分10
刚刚
byyyy完成签到,获得积分10
刚刚
温暖的俊驰完成签到,获得积分10
1秒前
Isabel完成签到,获得积分10
1秒前
yx应助陈强采纳,获得30
2秒前
sokach发布了新的文献求助10
4秒前
缓慢荔枝发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
天御雪完成签到,获得积分10
5秒前
gen关闭了gen文献求助
5秒前
5秒前
科研通AI5应助oldlee采纳,获得10
6秒前
6秒前
MADKAI发布了新的文献求助10
6秒前
哈哈悦完成签到,获得积分10
6秒前
赘婿应助duoduozs采纳,获得10
6秒前
kai完成签到,获得积分10
7秒前
7秒前
情怀应助xhy采纳,获得10
7秒前
整齐的灭绝完成签到 ,获得积分10
8秒前
充电宝应助船舵采纳,获得10
8秒前
lqphysics完成签到,获得积分10
8秒前
8秒前
小小完成签到 ,获得积分10
9秒前
320me666完成签到,获得积分10
10秒前
10秒前
velpro发布了新的文献求助10
11秒前
科研通AI5应助masu采纳,获得10
11秒前
小狸跟你拼啦完成签到,获得积分10
11秒前
寂寞的灵发布了新的文献求助10
11秒前
12秒前
honey完成签到,获得积分10
12秒前
白宝宝北北白应助eee采纳,获得10
12秒前
gcc应助HZW采纳,获得20
13秒前
13秒前
完美世界应助Hu111采纳,获得10
14秒前
khaosyi完成签到 ,获得积分10
15秒前
哇哈哈完成签到,获得积分10
16秒前
16秒前
buno应助啦啦采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672