G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经可乐完成签到 ,获得积分10
1秒前
夏召庆发布了新的文献求助10
1秒前
渐离完成签到,获得积分10
1秒前
vickie发布了新的文献求助10
1秒前
杰jie发布了新的文献求助10
2秒前
萍123完成签到 ,获得积分10
2秒前
武状元发布了新的文献求助10
2秒前
褐瞳完成签到,获得积分10
2秒前
2秒前
3秒前
可靠皮带完成签到,获得积分20
3秒前
畅快友儿发布了新的文献求助10
3秒前
mltyyds完成签到,获得积分10
4秒前
拼搏菲鹰完成签到,获得积分10
4秒前
姚序东发布了新的文献求助10
4秒前
Jasper应助整齐的海云采纳,获得10
4秒前
慕青应助激情的随阴采纳,获得10
4秒前
4秒前
zhang完成签到,获得积分20
4秒前
曹先生发布了新的文献求助10
6秒前
王蕊发布了新的文献求助20
6秒前
renyi完成签到 ,获得积分10
6秒前
wlx完成签到,获得积分10
6秒前
6秒前
7秒前
Deeki完成签到,获得积分10
7秒前
7秒前
7秒前
肉沫鸭完成签到,获得积分10
7秒前
鲜艳的忆枫完成签到,获得积分20
7秒前
8秒前
江鑫楷完成签到,获得积分10
8秒前
传奇3应助123采纳,获得10
8秒前
皇甫绍辉完成签到,获得积分10
8秒前
yinx完成签到,获得积分10
8秒前
下雪完成签到,获得积分10
8秒前
加碘盐完成签到,获得积分10
8秒前
shmily完成签到,获得积分10
8秒前
所所应助老衲采纳,获得10
9秒前
科研通AI6应助hu采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313