G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whwh发布了新的文献求助10
1秒前
1秒前
顺利的雪卉关注了科研通微信公众号
1秒前
lc完成签到,获得积分10
1秒前
1秒前
小马甲应助kaiqiang采纳,获得10
2秒前
2秒前
小蘑菇应助喜气洋洋采纳,获得10
5秒前
SciGPT应助自由萝卜采纳,获得10
5秒前
elerain发布了新的文献求助10
5秒前
6秒前
7秒前
佳佳的小宝贝完成签到 ,获得积分10
7秒前
爆米花应助愉快彩虹采纳,获得10
7秒前
7秒前
Bismarck发布了新的文献求助10
8秒前
9秒前
Godspeed完成签到,获得积分10
10秒前
无心客应助矢思然采纳,获得100
10秒前
11秒前
xingfangshu发布了新的文献求助10
11秒前
11秒前
12秒前
瀼瀼完成签到,获得积分10
13秒前
加油完成签到,获得积分10
13秒前
无花果应助栾欣怡采纳,获得10
13秒前
kaiqiang发布了新的文献求助10
14秒前
三杯薄荷水完成签到,获得积分10
15秒前
唔呜無完成签到 ,获得积分10
16秒前
丰荣完成签到,获得积分20
16秒前
爱喝酒的酒葫芦完成签到,获得积分10
16秒前
小白完成签到,获得积分10
18秒前
18秒前
哈哈哈哈发布了新的文献求助10
19秒前
19秒前
kaiqiang完成签到,获得积分20
20秒前
21秒前
Sun完成签到,获得积分10
21秒前
21秒前
小罗发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939