G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助落后的代秋采纳,获得10
刚刚
刚刚
爆米花应助wolf采纳,获得10
1秒前
马荣发布了新的文献求助10
3秒前
江睦月发布了新的文献求助10
3秒前
Nicole完成签到,获得积分10
3秒前
小鱼鱼发布了新的文献求助10
4秒前
Koko发布了新的文献求助50
4秒前
qingniujushi完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
凤凤完成签到,获得积分10
8秒前
8秒前
YUAN完成签到,获得积分10
8秒前
所谓完成签到,获得积分10
9秒前
10秒前
10秒前
烟花应助黑粉头头采纳,获得10
10秒前
11秒前
君莫笑发布了新的文献求助10
11秒前
11秒前
乔佳怡发布了新的文献求助10
12秒前
14秒前
大个应助爱吃年糕的朱采纳,获得10
14秒前
12138发布了新的文献求助10
14秒前
bin完成签到,获得积分10
14秒前
nini发布了新的文献求助30
15秒前
aaron_hill发布了新的文献求助10
16秒前
所所应助马荣采纳,获得10
16秒前
liuzhigang完成签到,获得积分10
16秒前
16秒前
李健应助马小花花花儿采纳,获得10
17秒前
17秒前
思源应助lvzhihao采纳,获得10
19秒前
小芋完成签到,获得积分10
19秒前
19秒前
阿郑完成签到,获得积分20
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687