G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
5秒前
流体离子发电机完成签到,获得积分10
5秒前
5秒前
5秒前
我是老大应助大力的问蕊采纳,获得10
8秒前
乡乡完成签到,获得积分10
9秒前
LFQ1998完成签到,获得积分20
10秒前
10秒前
完美时间线完成签到,获得积分10
11秒前
小董完成签到,获得积分20
11秒前
燕燕完成签到 ,获得积分10
11秒前
11秒前
HQ完成签到,获得积分10
12秒前
深情安青应助沉默的天使采纳,获得10
12秒前
12秒前
12秒前
skbkbe完成签到 ,获得积分10
13秒前
受伤毛豆发布了新的文献求助10
13秒前
Yoanna应助元谷雪采纳,获得30
13秒前
爱弹猫的吉他完成签到 ,获得积分10
13秒前
阳光的嫣完成签到,获得积分20
14秒前
15秒前
神秘玩家完成签到 ,获得积分10
15秒前
Vv发布了新的文献求助10
15秒前
16秒前
jiajia发布了新的文献求助10
17秒前
夏沫完成签到,获得积分10
17秒前
18秒前
18秒前
阳光的嫣发布了新的文献求助10
21秒前
21秒前
21秒前
耳机单蹦发布了新的文献求助10
22秒前
隐形曼青应助曲书文采纳,获得10
22秒前
核桃发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134322
求助须知:如何正确求助?哪些是违规求助? 4335087
关于积分的说明 13505951
捐赠科研通 4172482
什么是DOI,文献DOI怎么找? 2287697
邀请新用户注册赠送积分活动 1288658
关于科研通互助平台的介绍 1229444