亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangran_778完成签到,获得积分10
1秒前
3秒前
4秒前
李义志完成签到,获得积分10
7秒前
7秒前
佳佳发布了新的文献求助10
7秒前
啊哦发布了新的文献求助30
8秒前
今后应助李义志采纳,获得10
10秒前
科研通AI6应助黄黄黄采纳,获得10
10秒前
无极微光应助缓慢的藏鸟采纳,获得20
11秒前
贱小贱完成签到,获得积分10
11秒前
ZYP发布了新的文献求助10
14秒前
科研狗完成签到 ,获得积分10
15秒前
无花果应助好了没了采纳,获得10
15秒前
科研通AI6应助啊哦采纳,获得30
20秒前
黎娅完成签到 ,获得积分10
21秒前
23秒前
26秒前
好了没了完成签到,获得积分10
26秒前
挚智完成签到 ,获得积分10
28秒前
28秒前
好了没了发布了新的文献求助10
29秒前
lele完成签到,获得积分10
29秒前
迷路世立完成签到,获得积分10
30秒前
32秒前
FashionBoy应助vinss66home采纳,获得10
33秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
34秒前
遇晚完成签到,获得积分10
41秒前
肥牛完成签到,获得积分10
42秒前
45秒前
解你所忧完成签到 ,获得积分10
46秒前
SciGPT应助浅呀呀呀采纳,获得10
48秒前
ZepHyR发布了新的文献求助10
50秒前
54秒前
李义志发布了新的文献求助10
1分钟前
魁梧的衫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
LingC完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264