G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小海豚完成签到 ,获得积分10
1秒前
软耳兔的信箱完成签到 ,获得积分10
2秒前
大模型应助虚幻大象采纳,获得10
2秒前
楊書銘完成签到 ,获得积分10
2秒前
好运连连完成签到,获得积分10
3秒前
大聪明完成签到,获得积分10
3秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
3秒前
FashionBoy应助guike采纳,获得10
3秒前
鲤鱼安露发布了新的文献求助10
3秒前
LHP完成签到,获得积分10
4秒前
aquar1us完成签到,获得积分10
4秒前
Yhm发布了新的文献求助10
4秒前
李健应助时衍采纳,获得10
5秒前
领导范儿应助SU15964707813采纳,获得10
5秒前
凌发完成签到,获得积分10
5秒前
踢踢踢踢踢死你完成签到,获得积分10
6秒前
6秒前
顽固的肉完成签到,获得积分10
6秒前
ttt完成签到,获得积分10
6秒前
6秒前
6秒前
QingFeng完成签到,获得积分10
7秒前
朴素幼晴完成签到 ,获得积分10
8秒前
8秒前
iNk应助Pendulium采纳,获得10
8秒前
aaa北大街发布了新的文献求助10
8秒前
HC完成签到,获得积分10
9秒前
9秒前
smmu008完成签到,获得积分10
9秒前
lhy完成签到,获得积分10
9秒前
科研通AI6应助迪迦采纳,获得10
9秒前
9秒前
10秒前
sunny完成签到,获得积分0
10秒前
赵子迪完成签到,获得积分10
10秒前
英姑应助天真的人英采纳,获得10
10秒前
Winnie应助初衷未央采纳,获得10
10秒前
Rex发布了新的文献求助10
11秒前
WYB完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271