G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助CFC12采纳,获得10
1秒前
Ava应助文艺迎夏采纳,获得10
1秒前
ly发布了新的文献求助10
2秒前
cora发布了新的文献求助10
2秒前
鲸落发布了新的文献求助10
2秒前
wangye发布了新的文献求助10
3秒前
李爱国应助南梦娇采纳,获得10
3秒前
3秒前
3秒前
lulu发布了新的文献求助10
4秒前
来了完成签到,获得积分10
4秒前
救我发布了新的文献求助10
5秒前
5秒前
开心妙之完成签到,获得积分20
5秒前
小二郎应助cora采纳,获得10
5秒前
桥豆麻袋发布了新的文献求助50
5秒前
5秒前
强壮的美女完成签到,获得积分10
5秒前
5秒前
领导范儿应助橘涂采纳,获得10
6秒前
静静静发布了新的文献求助10
6秒前
7秒前
7秒前
佐哥完成签到,获得积分10
7秒前
11111完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
霉头脑完成签到 ,获得积分10
8秒前
科研通AI6应助张默言采纳,获得10
8秒前
赘婿应助蓝书签采纳,获得30
9秒前
yx阿聪发布了新的文献求助10
10秒前
开心妙之发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
梁蓉完成签到,获得积分20
11秒前
Zidawhy发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343