G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀灵薇发布了新的文献求助10
刚刚
刚刚
独特的夏蓉发布了新的文献求助150
刚刚
呆呆完成签到,获得积分10
1秒前
帅气的Bond完成签到,获得积分10
1秒前
2秒前
Owen应助Hour采纳,获得10
3秒前
3秒前
敬老院N号发布了新的文献求助30
3秒前
小马甲应助我要学文献采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
敬老院N号发布了新的文献求助30
4秒前
白衣发布了新的文献求助10
5秒前
5秒前
敬老院N号发布了新的文献求助30
5秒前
敬老院N号发布了新的文献求助30
6秒前
Ava应助espresso采纳,获得10
6秒前
6秒前
7秒前
Owen应助zzz采纳,获得10
7秒前
雪白飞槐完成签到,获得积分10
7秒前
suhanxing发布了新的文献求助10
7秒前
敬老院N号发布了新的文献求助30
8秒前
8秒前
丘比特应助syn采纳,获得10
8秒前
潇湘魂完成签到,获得积分10
9秒前
丸子发布了新的文献求助10
9秒前
所所应助陈晶采纳,获得10
9秒前
超级日光发布了新的文献求助10
9秒前
柒柒发布了新的文献求助10
10秒前
在水一方应助KYT采纳,获得10
10秒前
小der发布了新的文献求助10
10秒前
Ma发布了新的文献求助10
11秒前
ugk完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
邵邵发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756