G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
痴情的碧发布了新的文献求助10
1秒前
3秒前
丘比特应助彩色的傲晴采纳,获得10
3秒前
忧郁水香关注了科研通微信公众号
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
whisper完成签到 ,获得积分10
5秒前
蚕豆主播发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
yaoyinlin发布了新的文献求助10
8秒前
9秒前
10秒前
果子发布了新的文献求助10
10秒前
万芯完成签到,获得积分10
11秒前
亮子纠缠发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
bobo发布了新的文献求助10
12秒前
13秒前
hhppt应助fzzf采纳,获得30
13秒前
柚子发布了新的文献求助10
16秒前
温曈关注了科研通微信公众号
17秒前
ddl小战士发布了新的文献求助10
17秒前
小蘑菇应助butter0903采纳,获得10
17秒前
18秒前
炙热的凌寒完成签到 ,获得积分10
18秒前
19秒前
123发布了新的文献求助10
23秒前
Clay完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
26秒前
27秒前
无敌暴龙战士完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684712
求助须知:如何正确求助?哪些是违规求助? 5038581
关于积分的说明 15185077
捐赠科研通 4843916
什么是DOI,文献DOI怎么找? 2597004
邀请新用户注册赠送积分活动 1549597
关于科研通互助平台的介绍 1508096