G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵泽发布了新的文献求助10
1秒前
1秒前
Suyx发布了新的文献求助10
1秒前
2秒前
ding应助Antares采纳,获得10
2秒前
田様应助烂漫凝竹采纳,获得10
2秒前
科研通AI6应助cjch2025采纳,获得10
2秒前
未道发布了新的文献求助10
3秒前
星辰大海应助xiaobai采纳,获得10
3秒前
天将明完成签到,获得积分10
3秒前
4秒前
5秒前
科研通AI6应助djbj2022采纳,获得10
5秒前
xiaohuang发布了新的文献求助10
5秒前
vividkingking发布了新的文献求助10
5秒前
NexusExplorer应助吴念采纳,获得10
7秒前
7秒前
KKKZ完成签到,获得积分10
8秒前
大胆傲芙完成签到,获得积分10
9秒前
今后应助高宇晖采纳,获得10
9秒前
凉秋气爽完成签到,获得积分10
10秒前
10秒前
盖亚奇应助ocean采纳,获得20
11秒前
浮游应助天将明采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
9527King发布了新的文献求助10
15秒前
SZY发布了新的文献求助10
15秒前
15秒前
GGGT关注了科研通微信公众号
16秒前
无非发布了新的文献求助10
16秒前
研友_VZG7GZ应助殷勤的秋荷采纳,获得10
16秒前
林小鱼发布了新的文献求助10
17秒前
豪士赋完成签到,获得积分10
17秒前
18秒前
躞蹀发布了新的文献求助10
18秒前
失眠的耳机完成签到,获得积分10
19秒前
科研通AI2S应助zzb采纳,获得10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965