G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
烦烦完成签到,获得积分10
2秒前
尔池发布了新的文献求助10
3秒前
orixero应助upupup采纳,获得10
3秒前
3秒前
syh完成签到,获得积分10
3秒前
3秒前
一只百味鸡完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
欣喜书易完成签到 ,获得积分10
4秒前
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得80
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
小杭76应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得30
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
追寻听云应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352