G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 10334-10347 被引量:1
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
tly完成签到,获得积分10
1秒前
魔王小豆包完成签到,获得积分10
2秒前
2秒前
3秒前
舒心的紫雪完成签到 ,获得积分10
4秒前
6秒前
一粒苹果酒完成签到,获得积分10
6秒前
7秒前
阿西吧完成签到,获得积分10
8秒前
9秒前
9秒前
小乐发布了新的文献求助10
9秒前
9秒前
傅剑寒发布了新的文献求助30
9秒前
瓜6发布了新的文献求助10
10秒前
十是十发布了新的文献求助10
10秒前
科研通AI6应助山逍采纳,获得10
10秒前
Tom完成签到 ,获得积分10
11秒前
11秒前
傲娇芷容完成签到,获得积分20
13秒前
林新杰发布了新的文献求助10
13秒前
NexusExplorer应助gaintpeople采纳,获得10
15秒前
斯文败类应助ysy采纳,获得10
16秒前
科研小能手完成签到,获得积分10
16秒前
16秒前
zzzdx发布了新的文献求助10
17秒前
郭大侠发布了新的文献求助10
17秒前
英俊的如霜完成签到,获得积分10
18秒前
我是老大应助GTY采纳,获得30
19秒前
20秒前
seul完成签到,获得积分20
20秒前
风清扬发布了新的文献求助10
21秒前
21秒前
Una发布了新的文献求助10
21秒前
那就来吧完成签到,获得积分20
21秒前
21秒前
Hali完成签到,获得积分10
22秒前
瓜6完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354701
求助须知:如何正确求助?哪些是违规求助? 4486753
关于积分的说明 13967752
捐赠科研通 4387338
什么是DOI,文献DOI怎么找? 2410339
邀请新用户注册赠送积分活动 1402728
关于科研通互助平台的介绍 1376552