G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
da发布了新的文献求助10
1秒前
虚心沂发布了新的文献求助10
1秒前
roshan发布了新的文献求助10
1秒前
奇异完成签到 ,获得积分10
1秒前
迟迟完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
wangji_2017发布了新的文献求助60
5秒前
5秒前
confident完成签到 ,获得积分10
5秒前
6秒前
善学以致用应助LYL采纳,获得10
6秒前
bixr发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
wwwweer完成签到,获得积分10
7秒前
李三阳发布了新的文献求助10
7秒前
畅快的煜祺完成签到,获得积分10
8秒前
麦芽糖完成签到,获得积分10
8秒前
8秒前
bkagyin应助大不了退学采纳,获得10
9秒前
9秒前
奋力的王打工人完成签到,获得积分10
9秒前
10秒前
斯文败类应助chen采纳,获得10
10秒前
10秒前
牛太虚完成签到,获得积分10
10秒前
学生物的橘子应助猪猪hero采纳,获得10
10秒前
kkk完成签到 ,获得积分10
11秒前
12秒前
xLi完成签到,获得积分10
13秒前
13秒前
13秒前
莲枳榴莲完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099