亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

G-Diff: A Graph-Based Decoding Network for Diffusion Recommender Model

计算机科学 推荐系统 解码方法 图形 情报检索 理论计算机科学 算法
作者
Ruixin Chen,Jianping Fan,Meiqin Wu,Rui Cheng,Jiawen Song
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3491827
摘要

The recommendation system is an effective approach to alleviate the information overload caused by the popularization of the Internet. Existing recommendation methods often use advanced deep learning algorithms to predict user preferences. The diffusion model is a deep generative model that has received much attention in recent years and has been successfully applied in recommendation systems. However, previous research has mainly used MLP in the reverse process of the diffusion model, which fails to fully utilize the collective signals of various items in the recommendation system. This article improves the diffusion recommendation model by introducing a carefully designed graph-based decoding network (GDN) in the reverse process. GDN improves recommendation performance by introducing relationships between items via the item-item graph. In addition, skip connections and normalization layers are implemented to maintain low-order neighbor information. Experiments are conducted to compare the proposed model with several state-of-the-art recommendation methods on three real-world datasets, which demonstrate the improvement of the proposed method over the diffusion recommendation model. Specifically, the proposed method outperforms the diffusion recommendation model with autoencoder (AE) by 21.67% on average. The contribution of each component of the proposed model is also illustrated by the ablation experiments. The implementation codes of the proposed model are available via https://github.com/crx1729/G-Diff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wxxxxx完成签到 ,获得积分10
1秒前
唐阳发布了新的文献求助10
3秒前
张姐发布了新的文献求助10
4秒前
张姐完成签到,获得积分10
10秒前
28秒前
30秒前
贺可乐完成签到,获得积分10
32秒前
江南第八发布了新的文献求助10
35秒前
贺可乐发布了新的文献求助30
36秒前
zqq完成签到,获得积分0
37秒前
清爽谷秋发布了新的文献求助20
37秒前
江南第八完成签到,获得积分10
49秒前
壮观的谷冬完成签到 ,获得积分0
56秒前
传奇3应助zeyin采纳,获得10
1分钟前
清爽谷秋完成签到,获得积分20
1分钟前
lillian完成签到,获得积分10
1分钟前
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
dgcyjvfb发布了新的文献求助10
1分钟前
1分钟前
zeyin发布了新的文献求助10
1分钟前
丽娘完成签到 ,获得积分10
1分钟前
zeyin完成签到,获得积分10
1分钟前
2分钟前
ljl86400完成签到,获得积分10
2分钟前
852应助包容的绿蕊采纳,获得10
2分钟前
liuxian发布了新的文献求助10
2分钟前
1933644015应助淡然的妙芙采纳,获得50
2分钟前
华仔应助黄玉采纳,获得10
2分钟前
2分钟前
2分钟前
liuxian完成签到,获得积分10
2分钟前
2分钟前
黄玉发布了新的文献求助10
2分钟前
Honor完成签到 ,获得积分10
2分钟前
敏静完成签到,获得积分10
2分钟前
CipherSage应助archsaly采纳,获得10
2分钟前
archsaly完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220883
求助须知:如何正确求助?哪些是违规求助? 4394087
关于积分的说明 13680180
捐赠科研通 4257138
什么是DOI,文献DOI怎么找? 2335963
邀请新用户注册赠送积分活动 1333573
关于科研通互助平台的介绍 1288039