亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 语言学 物理 哲学 量子力学 地震学 程序设计语言 地质学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助活力的三娘采纳,获得10
2秒前
毛豆应助Wei采纳,获得10
11秒前
1437594843完成签到 ,获得积分10
39秒前
1分钟前
1分钟前
活力的三娘完成签到,获得积分10
1分钟前
寻道图强应助Bunnies采纳,获得50
1分钟前
道明嗣完成签到 ,获得积分10
2分钟前
Jasper应助筱可可采纳,获得30
2分钟前
2分钟前
筱可可发布了新的文献求助30
2分钟前
2分钟前
4分钟前
似水流年发布了新的文献求助10
4分钟前
gszy1975完成签到,获得积分10
4分钟前
所所应助似水流年采纳,获得10
4分钟前
大小姐发布了新的文献求助10
4分钟前
充电宝应助llxhh采纳,获得10
4分钟前
4分钟前
llxhh发布了新的文献求助10
5分钟前
Ava应助摇匀采纳,获得30
5分钟前
小鸟芋圆露露完成签到 ,获得积分10
5分钟前
taosky01完成签到,获得积分10
5分钟前
Bunnies完成签到,获得积分10
5分钟前
5分钟前
lyy发布了新的文献求助10
5分钟前
5分钟前
摇匀发布了新的文献求助30
5分钟前
orixero应助lyy采纳,获得10
6分钟前
liu完成签到 ,获得积分10
8分钟前
大模型应助momo采纳,获得10
8分钟前
领导范儿应助大小姐采纳,获得10
9分钟前
似水流年完成签到,获得积分20
9分钟前
9分钟前
大小姐发布了新的文献求助10
9分钟前
9分钟前
momo发布了新的文献求助10
9分钟前
略略略完成签到 ,获得积分10
11分钟前
anhuiwsy完成签到 ,获得积分10
11分钟前
Lorin完成签到 ,获得积分10
11分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291536
求助须知:如何正确求助?哪些是违规求助? 2927979
关于积分的说明 8434985
捐赠科研通 2599809
什么是DOI,文献DOI怎么找? 1418774
科研通“疑难数据库(出版商)”最低求助积分说明 660137
邀请新用户注册赠送积分活动 642771