已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 地质学 程序设计语言 地震学 哲学 物理 量子力学 语言学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
浦肯野完成签到,获得积分0
5秒前
赵莹静发布了新的文献求助10
9秒前
11秒前
打打应助喝牛奶de猪采纳,获得10
13秒前
15秒前
Aurora发布了新的文献求助10
16秒前
传奇3应助ACE采纳,获得10
20秒前
Chen完成签到 ,获得积分10
22秒前
26秒前
yuan完成签到 ,获得积分10
29秒前
热心市民DSQ完成签到,获得积分10
29秒前
32秒前
星辰大海应助隔壁的小民采纳,获得10
36秒前
43秒前
44秒前
46秒前
sy发布了新的文献求助10
50秒前
玛琳卡迪马完成签到 ,获得积分10
50秒前
明亮尔烟完成签到,获得积分20
51秒前
赵莹静完成签到,获得积分20
51秒前
51秒前
博ge完成签到 ,获得积分10
55秒前
冷静新烟完成签到,获得积分20
55秒前
传奇3应助冷酷的天空采纳,获得10
59秒前
1分钟前
luocan完成签到,获得积分10
1分钟前
可爱的函函应助1111采纳,获得10
1分钟前
1分钟前
1分钟前
ZhaoY完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
sy完成签到,获得积分10
1分钟前
1分钟前
CNS发发发发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076871
求助须知:如何正确求助?哪些是违规求助? 4296247
关于积分的说明 13386588
捐赠科研通 4118438
什么是DOI,文献DOI怎么找? 2255317
邀请新用户注册赠送积分活动 1259804
关于科研通互助平台的介绍 1192846