亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 地质学 程序设计语言 地震学 哲学 物理 量子力学 语言学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默发布了新的文献求助10
1秒前
Limerencia完成签到,获得积分10
11秒前
默mo完成签到 ,获得积分10
16秒前
22秒前
小刘完成签到,获得积分10
26秒前
28秒前
28秒前
NIANIANKNIA发布了新的文献求助200
33秒前
脑洞疼应助KUIWU采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
42秒前
43秒前
48秒前
1分钟前
1分钟前
轻松戎发布了新的文献求助10
1分钟前
华仔应助轻松戎采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
abc应助真实的书雪采纳,获得10
1分钟前
1分钟前
英俊的铭应助altair采纳,获得20
1分钟前
YJSSLBY完成签到 ,获得积分10
1分钟前
Akim应助123采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
altair发布了新的文献求助20
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
KUIWU发布了新的文献求助10
2分钟前
琪琪发布了新的文献求助10
2分钟前
2分钟前
白鲜香精完成签到,获得积分10
2分钟前
2分钟前
搜集达人应助端庄亦巧采纳,获得10
2分钟前
2分钟前
安静含卉发布了新的文献求助10
2分钟前
端庄亦巧发布了新的文献求助20
2分钟前
泡芙完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739324
求助须知:如何正确求助?哪些是违规求助? 5385476
关于积分的说明 15339630
捐赠科研通 4881945
什么是DOI,文献DOI怎么找? 2624022
邀请新用户注册赠送积分活动 1572714
关于科研通互助平台的介绍 1529508