已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 地质学 程序设计语言 地震学 哲学 物理 量子力学 语言学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助酷酷的大米采纳,获得30
刚刚
开心点完成签到 ,获得积分10
刚刚
刚刚
情怀应助充盈缺损采纳,获得10
4秒前
南川石发布了新的文献求助50
4秒前
5秒前
matinal发布了新的文献求助10
5秒前
Owen应助Bai采纳,获得10
10秒前
hao发布了新的文献求助10
10秒前
万能图书馆应助钙钛矿狗采纳,获得10
11秒前
刘刘完成签到 ,获得积分10
16秒前
17秒前
陈chen发布了新的文献求助10
17秒前
想毕业的猫猫完成签到,获得积分10
18秒前
yyds应助hao采纳,获得50
19秒前
wanci应助我又可以了采纳,获得30
20秒前
orixero应助XLT采纳,获得10
21秒前
拼搏映菡发布了新的文献求助10
23秒前
23秒前
26秒前
cyt9999发布了新的文献求助10
26秒前
hehe发布了新的文献求助10
26秒前
27秒前
科研通AI6应助janie采纳,获得10
27秒前
华仔应助janie采纳,获得10
27秒前
29秒前
Liz发布了新的文献求助10
31秒前
34秒前
abab完成签到 ,获得积分10
38秒前
38秒前
38秒前
安详的海风完成签到,获得积分10
40秒前
42秒前
天天快乐应助科研通管家采纳,获得30
43秒前
43秒前
ding应助科研通管家采纳,获得10
43秒前
Hello应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
隐形曼青应助科研通管家采纳,获得10
43秒前
Ava应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696