An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 语言学 物理 哲学 量子力学 地震学 程序设计语言 地质学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向上的小v完成签到 ,获得积分10
刚刚
刚刚
2秒前
酷酷紫蓝完成签到 ,获得积分10
2秒前
2秒前
方勇飞完成签到,获得积分10
2秒前
LYZ完成签到,获得积分10
2秒前
黄景滨完成签到 ,获得积分20
3秒前
3秒前
123456完成签到,获得积分20
3秒前
hkl1542完成签到,获得积分10
4秒前
4秒前
caohuijun发布了新的文献求助10
5秒前
杳鸢应助韦颖采纳,获得20
6秒前
6秒前
wshwx完成签到 ,获得积分10
6秒前
6秒前
魏伯安发布了新的文献求助10
7秒前
7秒前
传奇3应助daniel采纳,获得10
7秒前
ding应助帅气的听莲采纳,获得10
7秒前
sunshine完成签到,获得积分10
8秒前
大方嵩发布了新的文献求助10
8秒前
SciGPT应助tianny采纳,获得10
8秒前
skier发布了新的文献求助10
9秒前
HHHWJ完成签到 ,获得积分10
9秒前
敏感的芷发布了新的文献求助10
9秒前
怡然剑成关注了科研通微信公众号
9秒前
共享精神应助zhouleibio采纳,获得10
9秒前
贤惠的早晨完成签到 ,获得积分10
10秒前
六月毕业发布了新的文献求助10
10秒前
科研通AI5应助平常的毛豆采纳,获得10
10秒前
韦颖完成签到,获得积分20
12秒前
沉默的冬寒完成签到 ,获得积分10
13秒前
海科科给海科科的求助进行了留言
13秒前
迅速斑马完成签到,获得积分10
13秒前
百合完成签到 ,获得积分10
13秒前
wanghua完成签到,获得积分10
13秒前
Hello应助13679165979采纳,获得10
14秒前
ni发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824