An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 语言学 物理 哲学 量子力学 地震学 程序设计语言 地质学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的人雄完成签到,获得积分10
1秒前
nan发布了新的文献求助10
2秒前
王大雨发布了新的文献求助10
2秒前
橙子发布了新的文献求助20
2秒前
NexusExplorer应助小王贼棒采纳,获得10
2秒前
2秒前
空白发布了新的文献求助10
2秒前
3秒前
icebear发布了新的文献求助10
3秒前
万能图书馆应助1234采纳,获得10
5秒前
落卿然完成签到,获得积分20
7秒前
7秒前
ZYC发布了新的文献求助10
9秒前
科研那些年完成签到,获得积分10
10秒前
所所应助在途中采纳,获得10
10秒前
11秒前
肖原完成签到,获得积分10
11秒前
hhh发布了新的文献求助10
11秒前
小白完成签到 ,获得积分10
12秒前
yanzu完成签到,获得积分0
13秒前
小遇完成签到 ,获得积分10
13秒前
14秒前
icebear完成签到,获得积分10
15秒前
15秒前
mila完成签到,获得积分10
16秒前
16秒前
肌肉干细胞完成签到,获得积分10
17秒前
王含爽发布了新的文献求助10
19秒前
Hollow完成签到,获得积分10
19秒前
lanmin完成签到,获得积分10
20秒前
20秒前
Nano-Su发布了新的文献求助10
21秒前
Hello应助gg采纳,获得10
22秒前
mkmimii发布了新的文献求助10
22秒前
1234发布了新的文献求助10
24秒前
25秒前
小蘑菇应助shinn采纳,获得10
29秒前
雪山飞龙发布了新的文献求助10
29秒前
梅哈完成签到 ,获得积分10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498