亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 地质学 程序设计语言 地震学 哲学 物理 量子力学 语言学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只不受管束的小狸Miao完成签到 ,获得积分10
10秒前
ycyang完成签到,获得积分20
11秒前
13秒前
丰富的凡雁完成签到,获得积分20
16秒前
ppwq发布了新的文献求助10
17秒前
Owen应助HOU采纳,获得10
20秒前
斯文败类应助丰富的凡雁采纳,获得10
24秒前
我是老大应助lulu采纳,获得10
29秒前
30秒前
32秒前
领导范儿应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
充电宝应助科研通管家采纳,获得10
32秒前
HOU发布了新的文献求助10
33秒前
35秒前
英姑应助段红琼采纳,获得10
35秒前
无花果应助一见喜采纳,获得10
37秒前
Tumumu发布了新的文献求助10
37秒前
38秒前
闹闹发布了新的文献求助10
41秒前
41秒前
lulu发布了新的文献求助10
42秒前
43秒前
44秒前
zeran完成签到,获得积分10
45秒前
阉太狼发布了新的文献求助10
45秒前
zachary009完成签到 ,获得积分10
48秒前
Jasper应助可爱的坤采纳,获得50
48秒前
49秒前
爱撒娇的砖头完成签到,获得积分10
49秒前
linuo完成签到,获得积分10
50秒前
一见喜发布了新的文献求助10
50秒前
完美世界应助闹闹采纳,获得10
51秒前
古铜完成签到 ,获得积分10
52秒前
Tumumu完成签到,获得积分0
53秒前
lxl发布了新的文献求助10
54秒前
闹闹完成签到,获得积分20
57秒前
七色光发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714432
求助须知:如何正确求助?哪些是违规求助? 5223970
关于积分的说明 15273294
捐赠科研通 4865856
什么是DOI,文献DOI怎么找? 2612444
邀请新用户注册赠送积分活动 1562516
关于科研通互助平台的介绍 1519799