清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An enhanced deep intelligent model with feature fusion and ensemble learning for the fault diagnosis of rotating machinery

Softmax函数 断层(地质) 人工智能 计算机科学 可靠性(半导体) 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 特征提取 深度学习 信号(编程语言) 机器学习 功率(物理) 地质学 程序设计语言 地震学 哲学 物理 量子力学 语言学
作者
Kejia Zhuang,Bin Deng,Huai Chen,Li Jiang,Yibing Li,Jun Hu,Heung‐Fai Lam
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241298490
摘要

Vibration signals, serving as critical sources of information for monitoring the status of rotating machinery, demand effective extraction and rational utilization of its features to significantly enhance the accuracy and reliability of fault diagnosis. However, vibration signal features typically manifest as nonlinear and nonstationary, posing a significant challenge in industrial settings. To tackle this challenge, this article proposes an enhanced deep intelligent model based on feature fusion and ensemble learning for practical fault diagnosis of rotating machinery. First, a parallel network structure is introduced to comprehensively and accurately explore the fault characteristics of rotating machinery. This network comprises two branches: the first branch designs an improved one-dimensional convolutional neural network to extract locally robust features from raw signals; the second branch adopts variational mode decomposition to decompose raw signals into a set of intrinsic mode functions and extract comprehensive statistical features in both the time and frequency domains, significantly enhancing the signal representation capability. Subsequently, a deep neural network is used to extract more stable feature information. The features from the two branches are then fused, and the final network output is generated through a softmax regression function. Finally, ensemble learning uses a majority voting scheme to obtain more stable final outputs. To confirm the effectiveness of the proposed method, experiments are conducted on two laboratory cases and one industrial case. The experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and reliability in controlled laboratory environments and real-world industrial applications, making it highly applicable for real-time monitoring and predictive maintenance of industrial machinery. These improvements can reduce maintenance costs and downtime, thus enhancing operational efficiency in various industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwanglh完成签到 ,获得积分10
3秒前
sci完成签到 ,获得积分10
6秒前
6秒前
沉沉完成签到 ,获得积分0
22秒前
23秒前
鱼鱼鱼鱼完成签到 ,获得积分10
32秒前
无花果应助科研通管家采纳,获得10
38秒前
chcmy完成签到 ,获得积分0
50秒前
忧伤的摩托完成签到,获得积分20
56秒前
xmhxpz完成签到,获得积分10
58秒前
领导范儿应助忧伤的摩托采纳,获得10
1分钟前
1分钟前
1分钟前
Nancy完成签到 ,获得积分10
1分钟前
Hong完成签到 ,获得积分10
1分钟前
Matberry完成签到 ,获得积分10
1分钟前
charih完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
tingalan完成签到,获得积分0
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
隐形听双完成签到 ,获得积分10
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
2分钟前
冰阔落完成签到 ,获得积分10
2分钟前
寡核苷酸小白完成签到 ,获得积分10
2分钟前
daomaihu完成签到,获得积分10
2分钟前
火星上的雨柏完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
迅速的幻雪完成签到 ,获得积分10
3分钟前
3分钟前
上官若男应助刻苦的如霜采纳,获得10
3分钟前
zpl完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
佚名发布了新的文献求助10
3分钟前
3分钟前
3分钟前
久晓完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482602
求助须知:如何正确求助?哪些是违规求助? 4583348
关于积分的说明 14389217
捐赠科研通 4512509
什么是DOI,文献DOI怎么找? 2473013
邀请新用户注册赠送积分活动 1459195
关于科研通互助平台的介绍 1432729