材料科学
放电等离子烧结
电介质
结构精修
钙钛矿(结构)
铁电性
微观结构
陶瓷
相对密度
相(物质)
分析化学(期刊)
铁电陶瓷
烧结
化学计量学
矿物学
化学工程
晶体结构
复合材料
结晶学
物理化学
光电子学
化学
有机化学
色谱法
工程类
作者
Marcela Figueroa‐Arteaga,Aloadir L. S. Oliveira,D. Garcia,Fábio L. Zabotto,Claudia Fernanda Villaquirán Raigoza
摘要
Abstract Solution combustion synthesis (SCS) has proven to be one of the simplest and fastest methods, using inexpensive materials and resulting in homogeneous stoichiometry with nanometric particle sizes. The spark plasma sintering (SPS) method has been used to obtain high‐density ceramic materials with excellent control of microstructure. This work reports the successful combination of these two techniques for the fabrication of the high‐density lead‐free ferroelectric system (1‐ x )Ba(Zr ₀.₂ Ti ₀.₈ )O ₃‐ x (Ba ₀.₇ Ca ₀.₃ )TiO ₃ . The X‐ray diffraction of the powder indicates the majority formation of the perovskite structure and other residual reaction products, indicating a reactive powder. The SPS method resulted in highly densified samples, reaching relative density values close to 99% with a single‐phase perovskite structure. Rietveld refinement revealed the presence of at least two perovskite phases, independent of calcium concentration. Dielectric measurements showed anomalies in both the real and imaginary parts of the dielectric permittivity, which are typical of phase transitions and a low dielectric loss for all compositions. This study shows that the combined use of SCS and SPS technique can be a powerful protocol to produce dense, fine‐grained lead‐free ferroelectric ceramics at relatively low temperatures and in short time periods.
科研通智能强力驱动
Strongly Powered by AbleSci AI