Network pharmacology integrated with molecular docking and molecular dynamics simulations to explore the mechanism of Shaoyao Gancao Tang in the treatment of asthma and irritable bowel syndrome

肠易激综合征 医学 小桶 交互网络 计算生物学 哮喘 基因本体论 对接(动物) 生物信息学 药理学 基因 遗传学 生物 内科学 基因表达 护理部
作者
Mengjiao Ren,Jian Ma,Minye Qu
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:103 (50): e40929-e40929
标识
DOI:10.1097/md.0000000000040929
摘要

Background: Numerous studies have demonstrated a correlation between asthma and irritable bowel syndrome (IBS). The Chinese herbal compound Shaoyao Gancao Tang (SYGCT) has been found to have therapeutic effects on both asthma and IBS, but the underlying mechanisms are not yet fully understood. This study aims to explore the key components, key targets, and potential mechanisms of SYGCT in treating asthma with IBS by using network pharmacology, molecular docking techniques and molecular dynamics simulation. Methods: The major chemical components and potential target genes of SYGCT were screened by bioinformatics. The key targets of Asthma-IBS comorbidity were identified based on network modules. The intersection of the drug targets and disease targets was identified as the potential targets of SYGCT in treating asthma-IBS. Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to identify the biological processes and signaling pathways involved in these potential targets. A protein–protein interaction network was constructed to identify hub targets, while a drug-compound-target topological network was built to screen key compounds. Molecular docking was used to verify the affinity between the hub targets and key compounds. Molecular dynamics analysis was utilized to assess the binding stability of these interactions. Results: Network pharmacology analysis revealed that the therapeutic effect of SYGCT on asthma-IBS involved multiple biological processes and signaling pathways. It may exert therapeutic effects primarily through signaling pathways such as IL-17, TNF, and Th17 cell differentiation. The possible targets of SYGCT in the treatment of asthma-IBS could be IL6, TNF, JUN, PTGS2, STAT3, IL1B, CASP3, NFKBIA, IL10, and PPARG. Molecular docking verification showed that the predicted targets had good binding affinity with the compounds, among which PTGS2, CASP3, and PPARG had higher binding energy. Molecular dynamics simulation revealed that PTGS2, CASP3, and PPARG proteins had good stability and high binding strength with the compounds 2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-f]chromen-3-yl]-5-methoxyphenol and shinpterocarpin. Conclusion: SYGCT plays a therapeutic role in asthma and IBS through multiple targets and pathways, providing a theoretical basis for explaining the mechanism and clinical application of SYGCT in treating different diseases with the same treatment in asthma and IBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dddddd发布了新的文献求助10
1秒前
什么也难不倒我完成签到 ,获得积分10
1秒前
1秒前
立马毕业发布了新的文献求助10
1秒前
喜悦的尔阳完成签到,获得积分10
2秒前
2秒前
现实的白开水完成签到,获得积分10
2秒前
2秒前
SHDeathlock发布了新的文献求助50
2秒前
lunan发布了新的文献求助10
3秒前
3秒前
酷炫过客完成签到,获得积分20
3秒前
4秒前
5秒前
5秒前
华仔应助xiaoziyi666采纳,获得10
5秒前
渝州人完成签到,获得积分10
5秒前
5秒前
hanna发布了新的文献求助10
5秒前
科研通AI2S应助neil采纳,获得10
6秒前
大模型应助天真思雁采纳,获得10
6秒前
酷炫过客发布了新的文献求助10
6秒前
6秒前
深情凡灵发布了新的文献求助10
7秒前
马保国123发布了新的文献求助10
7秒前
胡须完成签到,获得积分10
8秒前
jjgod发布了新的文献求助10
8秒前
muomuo发布了新的文献求助10
9秒前
湘华完成签到,获得积分10
9秒前
渝州人发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
开放鸵鸟发布了新的文献求助10
11秒前
11秒前
温暖以蓝完成签到,获得积分20
11秒前
WTF完成签到,获得积分10
12秒前
花花花花完成签到,获得积分10
12秒前
franklvlei发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762